Two europium oxide/sulfide silicates, Eu2O(SiO4) (1) and Eu5S(SiO4)3 (2), have been synthesized using high-temperature solid-state reactions. 1 crystallizes in the monoclinic space group P21/c with a = 9.1459...Two europium oxide/sulfide silicates, Eu2O(SiO4) (1) and Eu5S(SiO4)3 (2), have been synthesized using high-temperature solid-state reactions. 1 crystallizes in the monoclinic space group P21/c with a = 9.1459(7), b = 7.1280(5), c = 6.7655(5) ? and ? = 107.611(2), belonging to the Gd2O(SiO4) structure type; 2 crystallizes in space group P63/m of the hexagonal system with a = 9.786(4) and c = 6.789(3) , belonging to the apatite Ca5Cl(PO4)3 structure type. The structure chemistry of related RE2O(SiO4) and RE5S(SiO4)3 compounds is also discussed. The optical energy gap of 2 is determined to be 2.05 eV.展开更多
基金supported by Yangzhou Engineering Technology Research Center of Petrochemical New Materials(YZM2015086)Yangzhou Science and Technology Bureau(YZ2016269)
文摘Two europium oxide/sulfide silicates, Eu2O(SiO4) (1) and Eu5S(SiO4)3 (2), have been synthesized using high-temperature solid-state reactions. 1 crystallizes in the monoclinic space group P21/c with a = 9.1459(7), b = 7.1280(5), c = 6.7655(5) ? and ? = 107.611(2), belonging to the Gd2O(SiO4) structure type; 2 crystallizes in space group P63/m of the hexagonal system with a = 9.786(4) and c = 6.789(3) , belonging to the apatite Ca5Cl(PO4)3 structure type. The structure chemistry of related RE2O(SiO4) and RE5S(SiO4)3 compounds is also discussed. The optical energy gap of 2 is determined to be 2.05 eV.