如今,外出旅行占据了人们解压方式的很大比重.拥有一个(些)志同道合的旅行玩伴成为了旅行能否舒心的一个重要因素.结合众包思想,用户发布结伴需求(用户可成为众包的任务发布者也可以成为任务的执行者),平台为用户匹配志同道合的玩伴,用...如今,外出旅行占据了人们解压方式的很大比重.拥有一个(些)志同道合的旅行玩伴成为了旅行能否舒心的一个重要因素.结合众包思想,用户发布结伴需求(用户可成为众包的任务发布者也可以成为任务的执行者),平台为用户匹配志同道合的玩伴,用户及其玩伴共同执行出去游玩任务,这样,在保证旅行质量的前提下,可以节省用户的金钱,实现资源共享,具有很好的现实意义.因此,本文提出了一个基于用户兴趣的玩伴匹配算法CGA(Car Group Allocation),根据仿真的用户历史访问数据为用户匹配具有相似兴趣的其他用户,且提出了用户根据意愿选择是否提供交通工具,也可以选择是否服从调剂,同时提供车辆的用户可以根据需求决定车辆剩余位置等现实因素.该算法采用真实的POIs(points of interest)点,仿真用户兴趣以及结伴需求,结合现实情况下的约束,运用蚁群算法迭代,为用户匹配相似度最高的群体.实验证明了本模型的有效性.展开更多
文摘如今,外出旅行占据了人们解压方式的很大比重.拥有一个(些)志同道合的旅行玩伴成为了旅行能否舒心的一个重要因素.结合众包思想,用户发布结伴需求(用户可成为众包的任务发布者也可以成为任务的执行者),平台为用户匹配志同道合的玩伴,用户及其玩伴共同执行出去游玩任务,这样,在保证旅行质量的前提下,可以节省用户的金钱,实现资源共享,具有很好的现实意义.因此,本文提出了一个基于用户兴趣的玩伴匹配算法CGA(Car Group Allocation),根据仿真的用户历史访问数据为用户匹配具有相似兴趣的其他用户,且提出了用户根据意愿选择是否提供交通工具,也可以选择是否服从调剂,同时提供车辆的用户可以根据需求决定车辆剩余位置等现实因素.该算法采用真实的POIs(points of interest)点,仿真用户兴趣以及结伴需求,结合现实情况下的约束,运用蚁群算法迭代,为用户匹配相似度最高的群体.实验证明了本模型的有效性.