期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的标识牌识别技术 被引量:2
1
作者 董正通 王涛 +1 位作者 赵侦钧 耿子贺 《计算机系统应用》 2021年第10期156-163,共8页
目前而言,我国标识识别技术正处于飞速发展阶段,具体体现在处理精度、再现性、灵活性、适用面、信息压缩等方面,但是,在实际发展过程中,该技术的发展还是受到了实际需求的限制.深度学习模型运算量大,难以在轻量级嵌入式设备上运行,工业... 目前而言,我国标识识别技术正处于飞速发展阶段,具体体现在处理精度、再现性、灵活性、适用面、信息压缩等方面,但是,在实际发展过程中,该技术的发展还是受到了实际需求的限制.深度学习模型运算量大,难以在轻量级嵌入式设备上运行,工业生产中噪声种类繁多复杂,影响识别准确性.针对上述问题,本文提出一种基于卷积神经网络的标识识别技术,利用改进的Canny边缘检测算法,来增强对边缘信息提取时的鲁棒性,实现在高噪声环境下对标识牌精准提取.另外为了进一步提高识别准确率,本文利用CNN和椭圆拟合相结合的思路,把模型识别结果和椭圆拟合结果相结合来判别识别的准确性,在增加少量运算量的同时提高识别准确率. 展开更多
关键词 CNN 椭圆拟合 标识识别 CANNY 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部