期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于集成算法的路段短时行驶时间预测
被引量:
1
1
作者
蒋怡玥
董蜀黔
周淑敏
《山东科学》
CAS
2018年第4期118-125,共8页
为了更好地解决路段行驶时间的短时预测问题,提出并改善了一种基于树的集成算法。针对小时间尺度下交通时变性强这一特性,构建更加鲁棒的梯度提升树(GBDT)以减少突变点的干扰。为了克服偏差-方差窘境,将随机树(RF)与GBDT进行融合,提出RF...
为了更好地解决路段行驶时间的短时预测问题,提出并改善了一种基于树的集成算法。针对小时间尺度下交通时变性强这一特性,构建更加鲁棒的梯度提升树(GBDT)以减少突变点的干扰。为了克服偏差-方差窘境,将随机树(RF)与GBDT进行融合,提出RF-GBDT的集成算法,并考虑各种历史旅行时间数据的相关变量以提高模型的可解释性。预测结果表明,与单独的RF或GBDT相比,RF-GBDT具有更好的预测准确度与算法稳定性。
展开更多
关键词
行驶时间
短时预测
集成
梯度提升树
随机森林
下载PDF
职称材料
题名
基于集成算法的路段短时行驶时间预测
被引量:
1
1
作者
蒋怡玥
董蜀黔
周淑敏
机构
北京交通大学交通运输学院
北京邮电大学信息与通信工程学院
出处
《山东科学》
CAS
2018年第4期118-125,共8页
基金
创新研究群体项目(71621001)
文摘
为了更好地解决路段行驶时间的短时预测问题,提出并改善了一种基于树的集成算法。针对小时间尺度下交通时变性强这一特性,构建更加鲁棒的梯度提升树(GBDT)以减少突变点的干扰。为了克服偏差-方差窘境,将随机树(RF)与GBDT进行融合,提出RF-GBDT的集成算法,并考虑各种历史旅行时间数据的相关变量以提高模型的可解释性。预测结果表明,与单独的RF或GBDT相比,RF-GBDT具有更好的预测准确度与算法稳定性。
关键词
行驶时间
短时预测
集成
梯度提升树
随机森林
Keywords
travel time
short term prediction
ensemble
gradient boosting decision tree(GBDT)
random forest (RF)
分类号
U213.2 [交通运输工程—道路与铁道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于集成算法的路段短时行驶时间预测
蒋怡玥
董蜀黔
周淑敏
《山东科学》
CAS
2018
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部