为了研究灌注桩套管振动贯入引起的施工效应,通过物理模型试验,对套管贯入过程及贯入过程中孔隙水压力、水平向挤土应力和土塞闭塞程度的变化规律进行了分析;建立了能够有效模拟灌注桩套管振动贯入过程的数值分析模型,并对物理模型试验...为了研究灌注桩套管振动贯入引起的施工效应,通过物理模型试验,对套管贯入过程及贯入过程中孔隙水压力、水平向挤土应力和土塞闭塞程度的变化规律进行了分析;建立了能够有效模拟灌注桩套管振动贯入过程的数值分析模型,并对物理模型试验进行大变形数值模拟及对比.研究结果表明:灌注桩套管贯入深度每增加0.2 m,超孔隙水压力和水平向挤土应力分别增加1 k Pa和8 k Pa,但挤土效应的影响范围主要集中在距离套管中心半径为6倍管径的范围内;由于套管壁与土体的反复剪切,产生不完全闭塞的土塞,套管端部形成环形土拱,此段土塞承担了80%的内摩阻力;随着套管直径增大,土塞闭塞程度由不完全闭塞过渡到完全非闭塞状态;套管贯入相同深度时,饱和砂土地基中土塞高度为干砂地基中土塞高度的1.2倍.展开更多
文摘为了研究灌注桩套管振动贯入引起的施工效应,通过物理模型试验,对套管贯入过程及贯入过程中孔隙水压力、水平向挤土应力和土塞闭塞程度的变化规律进行了分析;建立了能够有效模拟灌注桩套管振动贯入过程的数值分析模型,并对物理模型试验进行大变形数值模拟及对比.研究结果表明:灌注桩套管贯入深度每增加0.2 m,超孔隙水压力和水平向挤土应力分别增加1 k Pa和8 k Pa,但挤土效应的影响范围主要集中在距离套管中心半径为6倍管径的范围内;由于套管壁与土体的反复剪切,产生不完全闭塞的土塞,套管端部形成环形土拱,此段土塞承担了80%的内摩阻力;随着套管直径增大,土塞闭塞程度由不完全闭塞过渡到完全非闭塞状态;套管贯入相同深度时,饱和砂土地基中土塞高度为干砂地基中土塞高度的1.2倍.