自《普通高中数学课程标准(2017年版2020年修订)》颁布以来,数学课程的改革不断地深入,这对教师的数学专业知识素养提出了更高的要求,需要教师站在高观点视角下去理解中学数学知识的本质。除此之外,高考中频繁出现的具有高等数学背景的...自《普通高中数学课程标准(2017年版2020年修订)》颁布以来,数学课程的改革不断地深入,这对教师的数学专业知识素养提出了更高的要求,需要教师站在高观点视角下去理解中学数学知识的本质。除此之外,高考中频繁出现的具有高等数学背景的试题也对学生的认知提出了更高的要求。托勒密定理描述了圆内接四边形的四边与对角线之间的数量关系,在圆的几何学中起着独特的作用,利用它可以解决与圆有关的几何问题,也可以构造特殊的圆内接四边形来解决代数问题,将代数问题几何化,则很多问题的解决将更加方便且简单。通过对托勒密定理在高中数学中的多方面应用的研究,本文旨在激发学生对数学的兴趣,提高他们对数学概念的理解水平,为教师提供有效的教学工具,使学生更深入地理解数学知识,并在实际问题中灵活运用所学概念。Since the promulgation of the “General High School Mathematics Curriculum Standards (2017 Edition, 2020 Revision)”, the reform of mathematics curriculum has been continuously deepened, which has put forward higher requirements for teachers’ mathematical professional knowledge and literacy. Teachers need to understand the essence of middle school mathematics knowledge from a high perspective. In addition, the frequent appearance of questions with a background in advanced mathematics in the college entrance examination also puts higher demands on students’ cognition. Ptolemy’s theorem describes the quantitative relationship between the four sides and diagonals of a circle inscribed with a quadrilateral, playing a unique role in the geometry of circles. It can be used to solve geometric problems related to circles, as well as to construct special circles inscribed with quadrilaterals to solve algebraic problems. By geometricizing algebraic problems, many problems can be solved more conveniently and simply. Through the study of the various applications of Ptolemy’s theorem in high school mathematics, this article aims to stimulate students’ interest in mathematics, improve their understanding of mathematical concepts, provide effective teaching tools for teachers, enable students to have a deeper understanding of mathematical knowledge, and flexibly apply learned concepts in practical problems.展开更多
建构主义学习理论是一种重要的教育学派别,它强调个体对知识的建构过程,认为知识不是从外部输入,而是由学习者自己建构。在初中数学教学中,如何应用建构主义学习理论,激发学生的学习热情和主动性,提高学习效果,是当前教育工作者需要探...建构主义学习理论是一种重要的教育学派别,它强调个体对知识的建构过程,认为知识不是从外部输入,而是由学习者自己建构。在初中数学教学中,如何应用建构主义学习理论,激发学生的学习热情和主动性,提高学习效果,是当前教育工作者需要探讨和研究的问题。本文基于建构主义学习理论,探讨了初中数学教学中如何促进学生的自我建构,并提出了一些教学策略和方法,并以全等三角形为例进行具体分析和研究,以期为初中数学教师提供一些思路和建议。Constructivist learning theory is an important educational school that emphasizes the individual's process of constructing knowledge, believing that knowledge is not input from the outside, but constructed by learners themselves. How to apply constructivist learning theory in middle school mathematics teaching, stimulate students’ learning enthusiasm and initiative, and improve learning effectiveness, is a problem that current educators need to explore and research. This article is based on constructivist learning theory, exploring how to promote students’ self-construction in middle school mathematics teaching, and proposing some teaching strategies and methods. Taking congruent triangles as an example for specific analysis and research, it aims to provide some ideas and suggestions for middle school mathematics teachers.展开更多
问题解决教学模式是一种以问题为核心的教学方法,已经广泛地应用于课堂教学中。建构主义理论为问题解决教学提供了理论基础,本文基于建构主义理论,探究问题解决教学模式的应用策略,并以“等比数列求和公式”为例,设计教学过程:提出问题...问题解决教学模式是一种以问题为核心的教学方法,已经广泛地应用于课堂教学中。建构主义理论为问题解决教学提供了理论基础,本文基于建构主义理论,探究问题解决教学模式的应用策略,并以“等比数列求和公式”为例,设计教学过程:提出问题–解决问题–归纳总结–变式练习–总结反思。为高中数学教师教学提供参考。The teaching mode of problem solving is a teaching method with problems as the core, which has been widely used in classroom teaching. Constructivism theory provides a theoretical basis for the teaching of problem solving. Based on the constructivism theory, this paper explores the application strategy of problem solving teaching mode, and takes the “formula of parallel series summing” as an example to design the teaching process: question raising-problem solving-variant practice-summary and reflection, in order to provide reference for high school mathematics teacher teaching.展开更多
背景:鼻黏膜纤毛上皮细胞受损后导致鼻黏膜生物功能严重创伤。相对于其他成体干细胞,人脐血干细胞具有更好的诱导分化潜能。目的:观察人脐血干细胞通过体外培养、诱导分化为鼻黏膜纤毛上皮细胞的可行性。方法:收集正常健康人脐血,分离...背景:鼻黏膜纤毛上皮细胞受损后导致鼻黏膜生物功能严重创伤。相对于其他成体干细胞,人脐血干细胞具有更好的诱导分化潜能。目的:观察人脐血干细胞通过体外培养、诱导分化为鼻黏膜纤毛上皮细胞的可行性。方法:收集正常健康人脐血,分离人脐血干细胞,通过体外培养,鉴定干细胞表面标记物后进行传代培养;取第3代脐血干细胞,用携带增强型绿色荧光蛋白重组腺相关病毒进行感染,采用气液界面培养法,分别于诱导感染1,2周后对干细胞进行MUC8基因PCR检测。在脐血干细胞培养3周后进行FOXJ1免疫荧光染色。结果与结论:(1)培养鉴定结果:原代人脐血干细胞传代至第3代时,细胞形态较均一,折光性良好,可表达干细胞表面标记物;(2)转染鉴定结果:细胞转染3 h后,可见第3代干细胞呈现出绿色荧光,培养48 h后,流式细胞仪检测细胞阳性率达96.2%,说明干细胞转染效果很好;(3)RT-PCR检测:人脐血干细胞MUC8 m RNA无表达,而鼻黏膜上皮细胞MUC8 m RNA呈现出强表达,培养1周时MUC8mRNA呈现弱表达,培养2周后有一定的增强;(4)免疫荧光染色:在转染的绿色荧光蛋白背景下可观测到FOXJ1红色荧光呈现阳性表达结果;(5)结果说明:人脐血干细胞在适宜培养条件下可分化为鼻黏膜纤毛上皮细胞。展开更多
文摘自《普通高中数学课程标准(2017年版2020年修订)》颁布以来,数学课程的改革不断地深入,这对教师的数学专业知识素养提出了更高的要求,需要教师站在高观点视角下去理解中学数学知识的本质。除此之外,高考中频繁出现的具有高等数学背景的试题也对学生的认知提出了更高的要求。托勒密定理描述了圆内接四边形的四边与对角线之间的数量关系,在圆的几何学中起着独特的作用,利用它可以解决与圆有关的几何问题,也可以构造特殊的圆内接四边形来解决代数问题,将代数问题几何化,则很多问题的解决将更加方便且简单。通过对托勒密定理在高中数学中的多方面应用的研究,本文旨在激发学生对数学的兴趣,提高他们对数学概念的理解水平,为教师提供有效的教学工具,使学生更深入地理解数学知识,并在实际问题中灵活运用所学概念。Since the promulgation of the “General High School Mathematics Curriculum Standards (2017 Edition, 2020 Revision)”, the reform of mathematics curriculum has been continuously deepened, which has put forward higher requirements for teachers’ mathematical professional knowledge and literacy. Teachers need to understand the essence of middle school mathematics knowledge from a high perspective. In addition, the frequent appearance of questions with a background in advanced mathematics in the college entrance examination also puts higher demands on students’ cognition. Ptolemy’s theorem describes the quantitative relationship between the four sides and diagonals of a circle inscribed with a quadrilateral, playing a unique role in the geometry of circles. It can be used to solve geometric problems related to circles, as well as to construct special circles inscribed with quadrilaterals to solve algebraic problems. By geometricizing algebraic problems, many problems can be solved more conveniently and simply. Through the study of the various applications of Ptolemy’s theorem in high school mathematics, this article aims to stimulate students’ interest in mathematics, improve their understanding of mathematical concepts, provide effective teaching tools for teachers, enable students to have a deeper understanding of mathematical knowledge, and flexibly apply learned concepts in practical problems.
文摘建构主义学习理论是一种重要的教育学派别,它强调个体对知识的建构过程,认为知识不是从外部输入,而是由学习者自己建构。在初中数学教学中,如何应用建构主义学习理论,激发学生的学习热情和主动性,提高学习效果,是当前教育工作者需要探讨和研究的问题。本文基于建构主义学习理论,探讨了初中数学教学中如何促进学生的自我建构,并提出了一些教学策略和方法,并以全等三角形为例进行具体分析和研究,以期为初中数学教师提供一些思路和建议。Constructivist learning theory is an important educational school that emphasizes the individual's process of constructing knowledge, believing that knowledge is not input from the outside, but constructed by learners themselves. How to apply constructivist learning theory in middle school mathematics teaching, stimulate students’ learning enthusiasm and initiative, and improve learning effectiveness, is a problem that current educators need to explore and research. This article is based on constructivist learning theory, exploring how to promote students’ self-construction in middle school mathematics teaching, and proposing some teaching strategies and methods. Taking congruent triangles as an example for specific analysis and research, it aims to provide some ideas and suggestions for middle school mathematics teachers.
文摘问题解决教学模式是一种以问题为核心的教学方法,已经广泛地应用于课堂教学中。建构主义理论为问题解决教学提供了理论基础,本文基于建构主义理论,探究问题解决教学模式的应用策略,并以“等比数列求和公式”为例,设计教学过程:提出问题–解决问题–归纳总结–变式练习–总结反思。为高中数学教师教学提供参考。The teaching mode of problem solving is a teaching method with problems as the core, which has been widely used in classroom teaching. Constructivism theory provides a theoretical basis for the teaching of problem solving. Based on the constructivism theory, this paper explores the application strategy of problem solving teaching mode, and takes the “formula of parallel series summing” as an example to design the teaching process: question raising-problem solving-variant practice-summary and reflection, in order to provide reference for high school mathematics teacher teaching.
文摘背景:鼻黏膜纤毛上皮细胞受损后导致鼻黏膜生物功能严重创伤。相对于其他成体干细胞,人脐血干细胞具有更好的诱导分化潜能。目的:观察人脐血干细胞通过体外培养、诱导分化为鼻黏膜纤毛上皮细胞的可行性。方法:收集正常健康人脐血,分离人脐血干细胞,通过体外培养,鉴定干细胞表面标记物后进行传代培养;取第3代脐血干细胞,用携带增强型绿色荧光蛋白重组腺相关病毒进行感染,采用气液界面培养法,分别于诱导感染1,2周后对干细胞进行MUC8基因PCR检测。在脐血干细胞培养3周后进行FOXJ1免疫荧光染色。结果与结论:(1)培养鉴定结果:原代人脐血干细胞传代至第3代时,细胞形态较均一,折光性良好,可表达干细胞表面标记物;(2)转染鉴定结果:细胞转染3 h后,可见第3代干细胞呈现出绿色荧光,培养48 h后,流式细胞仪检测细胞阳性率达96.2%,说明干细胞转染效果很好;(3)RT-PCR检测:人脐血干细胞MUC8 m RNA无表达,而鼻黏膜上皮细胞MUC8 m RNA呈现出强表达,培养1周时MUC8mRNA呈现弱表达,培养2周后有一定的增强;(4)免疫荧光染色:在转染的绿色荧光蛋白背景下可观测到FOXJ1红色荧光呈现阳性表达结果;(5)结果说明:人脐血干细胞在适宜培养条件下可分化为鼻黏膜纤毛上皮细胞。
文摘目的探讨嗓音障碍指数(voice handicap index,VHI)用于嗓音障碍性疾病患者自我评估的临床意义及与声学参数间的相关性。方法对嗓音障碍性患者114例(患者组)及嗓音正常者40例(对照组)采用多维嗓音软件(multi dimensional voice program,MDVP)进行嗓音声学分析和VHI调查,嗓音声学分析指标包括基频、基频微扰、振幅微扰、噪声/谐和比(noise to harmonic ratio,NHR),VHI调查包括功能(function,F)、生理(physiology,P)、情感(emotion,E)3个范畴,记录3方面得分及总分(total scores of the VHI,TVH)分值。结果患者组的基频微扰、振幅微扰、NHR均高于正常组,差异有统计学意义(P<0.01);患者组与对照组间VHI差异有统计学意义(P<0.01)。VHI中P与E之间(r=0.863),F与TVH之间(r=0.818)、P与TVH之间(r=0.929)、E与TVH之间(r=0.910)均有良好相关性(P<0.01);VHI各范畴与嗓音各参数之间无显著相关性(P>0.05)。结论临床上不能以嗓音声学分析为标准来预测主观评估结果;VHI可用于主观反映患者的嗓音障碍程度。