对于多变量系统,回路间的关联分析和变量配对是控制系统设计的第一步。文献针对稳态相对增益阵(relative gain array,RGA)只考虑了系统的稳态特性而没有考虑动态过程中各回路的影响的基础上提出了各种改进的动态相对增益阵。在多变量状...对于多变量系统,回路间的关联分析和变量配对是控制系统设计的第一步。文献针对稳态相对增益阵(relative gain array,RGA)只考虑了系统的稳态特性而没有考虑动态过程中各回路的影响的基础上提出了各种改进的动态相对增益阵。在多变量状态反馈预测控制(SFPC)的基础上提出了一种新的变量配对标准,能比较充分的反映控制过程的动态和稳态信息。通过对预测时域P的优化选择确定被控过程的相关性指数矩阵μ,并将μ与稳态信息阵K相结合得出最终的配对矩阵Λ。最后通过实例研究与其他配对方法比较,表明提出的方法能得出比较好的变量配对结果。展开更多
Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operat...Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.展开更多
文摘对于多变量系统,回路间的关联分析和变量配对是控制系统设计的第一步。文献针对稳态相对增益阵(relative gain array,RGA)只考虑了系统的稳态特性而没有考虑动态过程中各回路的影响的基础上提出了各种改进的动态相对增益阵。在多变量状态反馈预测控制(SFPC)的基础上提出了一种新的变量配对标准,能比较充分的反映控制过程的动态和稳态信息。通过对预测时域P的优化选择确定被控过程的相关性指数矩阵μ,并将μ与稳态信息阵K相结合得出最终的配对矩阵Λ。最后通过实例研究与其他配对方法比较,表明提出的方法能得出比较好的变量配对结果。
基金Supported by the National Natural Science Foundation of China(21006127)the National Basic Research Program of China(2012CB720500)the Science Foundation of China University of Petroleum(KYJJ2012-05-28)
文摘Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.