期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于随机森林的网表级时序预测模型 被引量:2
1
作者 蒋政涛 贺旭 +1 位作者 李琼 傅智勇 《微电子学与计算机》 2022年第12期107-114,共8页
在超大规模集成电路设计中,时序分析的准确性对指导时序优化,保证芯片时序收敛和运行性能至关重要.目前,时序分析绝大多数都是采用商用签核(Sign-off)工具时序报告,作为主要依据.在逻辑综合阶段,由于缺少物理布局布线之后的模块位置和... 在超大规模集成电路设计中,时序分析的准确性对指导时序优化,保证芯片时序收敛和运行性能至关重要.目前,时序分析绝大多数都是采用商用签核(Sign-off)工具时序报告,作为主要依据.在逻辑综合阶段,由于缺少物理布局布线之后的模块位置和布线结果等信息,因此很难得到准确的电容电阻等寄生参数,用于预测其对应的Sign-off时序.为提高逻辑综合阶段时序预测的准确性,在给定工艺库的情况下,以电路网表作为输入,采用线负载模型对网表的电容电阻等进行估算,并在此基础上利用Elmore Delay模型计算时延作为时序特征.在时序模型训练阶段,提取训练集电路网表的时序特征,以训练模型对应的Sign-off时序结果为标准,采用机器学习中的随机森林算法进行模型训练,包括构建三个模型:互连线时延(Wire delay)、互连线信号转换时延(Wire slew),以及输出负载(Output load).在测试阶段,本文以同工艺库下,新的电路网表作为测试集,输入给训练后的时序模型进行预测.我们的方法与商用工具PrimeTime相比,在Wire delay和Wire slew的Sign-off结果预测上,平均一致性(Correlation)分别提高了49%、37%.此外,我们的方法所预测的Output load与Sign-off结果的一致性在0.99以上. 展开更多
关键词 静态时序分析 随机森林 逻辑综合 网表级
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部