期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的工程结构损伤识别研究进展
被引量:
5
1
作者
李子奇
蒋柱虎
+2 位作者
王力
张宇星
潘启仁
《中国安全生产科学技术》
CAS
CSCD
北大核心
2022年第12期43-48,共6页
为避免或减轻工程结构在建造和运营期间因结构振动产生不同程度损伤,造成安全隐患危及人们生命财产安全,针对结构振动损伤识别技术展开研究,探讨不同深度学习方法发展情况及其利弊,寻找更具可行性的损伤识别方法,并对其最新研究及应用...
为避免或减轻工程结构在建造和运营期间因结构振动产生不同程度损伤,造成安全隐患危及人们生命财产安全,针对结构振动损伤识别技术展开研究,探讨不同深度学习方法发展情况及其利弊,寻找更具可行性的损伤识别方法,并对其最新研究及应用现状进行全面综述。研究结果表明:应用深度学习开发新的结构损伤识别技术,无需冗余的数据预处理以及手工提取损伤特征,实现以较高精度实现损伤识别任务;一维卷积神经网络(1D-CNN)以其独特的应用优势,在数据样本有限条件下较二维卷积神经网络(2D-CNN)表现更为出色。研究结果可为数据驱动的结构损伤识别问题提供新思路,进一步完善土木结构健康监测研究体系。
展开更多
关键词
工程结构
结构损伤识别
深度学习
卷积神经网络
下载PDF
职称材料
题名
基于深度学习的工程结构损伤识别研究进展
被引量:
5
1
作者
李子奇
蒋柱虎
王力
张宇星
潘启仁
机构
兰州交通大学土木工程学院
兰州交通大学甘肃省道路桥梁与地下工程重点实验室
出处
《中国安全生产科学技术》
CAS
CSCD
北大核心
2022年第12期43-48,共6页
文摘
为避免或减轻工程结构在建造和运营期间因结构振动产生不同程度损伤,造成安全隐患危及人们生命财产安全,针对结构振动损伤识别技术展开研究,探讨不同深度学习方法发展情况及其利弊,寻找更具可行性的损伤识别方法,并对其最新研究及应用现状进行全面综述。研究结果表明:应用深度学习开发新的结构损伤识别技术,无需冗余的数据预处理以及手工提取损伤特征,实现以较高精度实现损伤识别任务;一维卷积神经网络(1D-CNN)以其独特的应用优势,在数据样本有限条件下较二维卷积神经网络(2D-CNN)表现更为出色。研究结果可为数据驱动的结构损伤识别问题提供新思路,进一步完善土木结构健康监测研究体系。
关键词
工程结构
结构损伤识别
深度学习
卷积神经网络
Keywords
engineering structure
structural damage identification
deep learning
convolution neural network
分类号
TU317 [建筑科学—结构工程]
X947 [环境科学与工程—安全科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的工程结构损伤识别研究进展
李子奇
蒋柱虎
王力
张宇星
潘启仁
《中国安全生产科学技术》
CAS
CSCD
北大核心
2022
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部