期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于模型不可知元学习与对抗训练的中文情感分析研究
被引量:
1
1
作者
张韬政
蒙佳健
李康
《中国传媒大学学报(自然科学版)》
2023年第3期31-40,共10页
中文情感分析旨在挖掘出中文文本中的主观情感。目前大多数基于深度学习的中文情感分析模型需要依赖大规模的标注数据去训练,同时深度学习模型在实际应用当中很容易受到对抗性扰动的影响,导致模型的性能下降。针对上述问题,本文提出了...
中文情感分析旨在挖掘出中文文本中的主观情感。目前大多数基于深度学习的中文情感分析模型需要依赖大规模的标注数据去训练,同时深度学习模型在实际应用当中很容易受到对抗性扰动的影响,导致模型的性能下降。针对上述问题,本文提出了基于模型不可知元学习与对抗训练的中文情感分析模型,能够在小规模的数据集下利用元学习加速模型收敛,同时生成对抗样本对模型进行对抗训练,提升模型的抗干扰能力,实验证明模型取得了出色的表现。
展开更多
关键词
BERT
BiLSTM
模型不可知元学习
对抗训练
情感分析
下载PDF
职称材料
题名
基于模型不可知元学习与对抗训练的中文情感分析研究
被引量:
1
1
作者
张韬政
蒙佳健
李康
机构
中国传媒大学信息与通信工程学院
出处
《中国传媒大学学报(自然科学版)》
2023年第3期31-40,共10页
基金
中国传媒大学中央高校基本科研业务费专项资金资助(3132018XNG1829)。
文摘
中文情感分析旨在挖掘出中文文本中的主观情感。目前大多数基于深度学习的中文情感分析模型需要依赖大规模的标注数据去训练,同时深度学习模型在实际应用当中很容易受到对抗性扰动的影响,导致模型的性能下降。针对上述问题,本文提出了基于模型不可知元学习与对抗训练的中文情感分析模型,能够在小规模的数据集下利用元学习加速模型收敛,同时生成对抗样本对模型进行对抗训练,提升模型的抗干扰能力,实验证明模型取得了出色的表现。
关键词
BERT
BiLSTM
模型不可知元学习
对抗训练
情感分析
Keywords
BERT
BiLSTM
model-agnostic meta-learning
antagonistic training
affective analysis
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于模型不可知元学习与对抗训练的中文情感分析研究
张韬政
蒙佳健
李康
《中国传媒大学学报(自然科学版)》
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部