期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PCA-LM-BP神经网络的岩石可钻性预测研究 被引量:2
1
作者 蒲先渤 李泽群 +3 位作者 尹飞 范杰 曹鲁刚 智亮 《钻探工程》 2023年第6期63-68,共6页
预测岩石的可钻性等级能够为钻探工程项目的开展提供有效帮助,根据岩石的可钻性等级选择合理的工艺、方法、技术为项目提供技术支撑。本文考虑岩石在地下空间中受复杂环境因素影响,从地球物理勘探数据、岩石的力学性质和物理性质中选择... 预测岩石的可钻性等级能够为钻探工程项目的开展提供有效帮助,根据岩石的可钻性等级选择合理的工艺、方法、技术为项目提供技术支撑。本文考虑岩石在地下空间中受复杂环境因素影响,从地球物理勘探数据、岩石的力学性质和物理性质中选择5种影响岩石可钻性的等级因素,用主成分分析法(PCA)解释每种影响因素之间的相关性及贡献率,消除5种影响因素之间的相关性,选择相关性低的3个主成分代替数据样本进行预测评价。编写LM-BP算法,合理设置预测模型参数值,以主成分分析后的数据样本作为基础,建立岩石可钻性等级预测模型,对预测结果与室内实验法的实测结果进行分析对比,经分析得知,PCA-LM-BP预测模型在岩石可钻性等级预测中,具有预测精准度高、预测时间短的特点,可被应用于钻探工程中的岩石可钻性分析。 展开更多
关键词 岩石可钻性 主成分分析法 LM-BP算法 误差分析 预测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部