期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合多源异构数据的滑坡变形阶段智能判识方法
1
作者 蒲未来 刘敦龙 +2 位作者 桑学佳 张少杰 陈乔 《灾害学》 CSCD 北大核心 2023年第4期179-186,共8页
针对滑坡体不同变形阶段的监测数据样本不均衡,样本扩充量的限定研究较少以及判识模型准确率较低等现实问题,该文提出了一种少数类样本全局扩充量测算方法以及将分类结果混淆矩阵与GSA相结合的基于遗传的多分类样本合成方法MCGSA,可避... 针对滑坡体不同变形阶段的监测数据样本不均衡,样本扩充量的限定研究较少以及判识模型准确率较低等现实问题,该文提出了一种少数类样本全局扩充量测算方法以及将分类结果混淆矩阵与GSA相结合的基于遗传的多分类样本合成方法MCGSA,可避免产生大量的合成样本,且有效解决了样本不均衡问题;其次借助堆栈泛化思想以及具有较强知识挖掘能力的机器学习模型,结合滑坡体的多源异构监测数据,构建了基于stacking的滑坡变形阶段智能判识模型;最后将该模型应用在多个滑坡隐患点上进行现场实验测试,并进行了对比实验分析,分析结果显示该判识模型的准确率可达89%,F1宏平均值达到了74%。模型的判识结果可为区域内滑坡隐患点的预警信息发布提供辅助决策。 展开更多
关键词 滑坡变形阶段 多源异构 全局扩充量测算 MCGSA样本合成 混淆矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部