The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization.In order to reveal the underlying mechanism,a cellular automaton model was proposed by incorporati...The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization.In order to reveal the underlying mechanism,a cellular automaton model was proposed by incorporating the floor field and the view field which reflects the global information of the studied area and local interactions with others.The presented model can well reproduce typical collective behaviors,such as lane formation.Numerical simulations were performed in the case of a wide bottleneck and typical flow patterns at different density ranges were identified as rarefied flow,laminar flow,interrupted bidirectional flow,oscillatory flow,intermittent flow,and choked flow.The effects of several parameters,such as the size of view field and the width of opening,on the bottleneck flow are also analyzed in detail.The view field plays a vital role in reproducing self-organized phenomena of pedestrian.Numerical results showed that the presented model can capture key characteristics of bottleneck flows.展开更多
In this paper, an extended social force model was applied to investigate fundamental diagrams of pedestrian flows. In the presented model, both the static floor field and the view field were taken into account. Then e...In this paper, an extended social force model was applied to investigate fundamental diagrams of pedestrian flows. In the presented model, both the static floor field and the view field were taken into account. Then each pedestrian can determine his/her desired walking directions according to both global and local information. The fundamental diagrams were obtained numerically under periodic boundary condition. It was found that the fundamental diagrams show good agreement with the measured data in the case of unidirectional flow, especially in the medium density range. However, the fundamental diagram for the case of bidirectional flow gave larger values than the measured data. Furthermore, the bidirectional flux is larger than the tmidirectional flux in a certain density range. It is indicated that the bidirectional flow may be more efficient than the unidirectional flow in some cases. The process of lane formation is quite quick in the model. Typical flow patterns in three scenarios were given to show some realistic applications.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2012CB725404)the National Natural Science Foundation of China(Grant Nos.11172164 and 11572184)
文摘The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization.In order to reveal the underlying mechanism,a cellular automaton model was proposed by incorporating the floor field and the view field which reflects the global information of the studied area and local interactions with others.The presented model can well reproduce typical collective behaviors,such as lane formation.Numerical simulations were performed in the case of a wide bottleneck and typical flow patterns at different density ranges were identified as rarefied flow,laminar flow,interrupted bidirectional flow,oscillatory flow,intermittent flow,and choked flow.The effects of several parameters,such as the size of view field and the width of opening,on the bottleneck flow are also analyzed in detail.The view field plays a vital role in reproducing self-organized phenomena of pedestrian.Numerical results showed that the presented model can capture key characteristics of bottleneck flows.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572184,11562020 and 11172164)the National Basic Research Development Program of China(973 Program,Grant No.2012CB725404)
文摘In this paper, an extended social force model was applied to investigate fundamental diagrams of pedestrian flows. In the presented model, both the static floor field and the view field were taken into account. Then each pedestrian can determine his/her desired walking directions according to both global and local information. The fundamental diagrams were obtained numerically under periodic boundary condition. It was found that the fundamental diagrams show good agreement with the measured data in the case of unidirectional flow, especially in the medium density range. However, the fundamental diagram for the case of bidirectional flow gave larger values than the measured data. Furthermore, the bidirectional flux is larger than the tmidirectional flux in a certain density range. It is indicated that the bidirectional flow may be more efficient than the unidirectional flow in some cases. The process of lane formation is quite quick in the model. Typical flow patterns in three scenarios were given to show some realistic applications.