用热重-差热(TG-DTA)技术,在不同升温速率条件下,研究了十水草酸镧在空气气氛下的热分解过程.分别采用Ozawa-Flynm-Wall法、Kissinger法、Crane法和同步热分析法确定其热分解动力学参数.TG-DTA曲线表明:十水草酸镧分解为四个阶段,前两...用热重-差热(TG-DTA)技术,在不同升温速率条件下,研究了十水草酸镧在空气气氛下的热分解过程.分别采用Ozawa-Flynm-Wall法、Kissinger法、Crane法和同步热分析法确定其热分解动力学参数.TG-DTA曲线表明:十水草酸镧分解为四个阶段,前两个阶段为脱水过程,后两个阶段为La_2(C_2O_4)_3的分解过程.实验计算得出四步反应表观活化能E分别为83.92、76.04、136.26、162.61 k J·mol-1左右;指前因子A分别为4.92×10^(10)、6.1×10~7、2.1×10~9、8.46×10~6s-1左右;反应级数n均为1左右,并用Coats-Redfem积分法得出第三步分解机理受F1控制.展开更多
稀土草酸盐是目前制备稀土氧化物,尤其是制备具有可控粒度的稀土氧化物常用的前驱体,它具有沉淀物晶型好,易于过滤分解等优点.然而,目前稀土草酸盐热分解的动力学研究较少,因此,采用热重-差热分析法,研究六水草酸镝的热分解过程,通过Kis...稀土草酸盐是目前制备稀土氧化物,尤其是制备具有可控粒度的稀土氧化物常用的前驱体,它具有沉淀物晶型好,易于过滤分解等优点.然而,目前稀土草酸盐热分解的动力学研究较少,因此,采用热重-差热分析法,研究六水草酸镝的热分解过程,通过Kissinger、Ozawa和Crane法计算六水草酸镝的分解动力学参数,通过Coats-Redfern法求出反应的机理函数.结果表明:几种方法计算的分解活化能比较接近,六水草酸镝热分解分2步进行,第1步为1级脱水反应,反应机理函数为F1,表观活化能为62.48 k J/mol,指前因子为1.84×106;第2步也为1级分解反应,反应机理函数为F2,表观活化能为106.42 k J/mol,指前因子为2.79×107.展开更多
文摘用热重-差热(TG-DTA)技术,在不同升温速率条件下,研究了十水草酸镧在空气气氛下的热分解过程.分别采用Ozawa-Flynm-Wall法、Kissinger法、Crane法和同步热分析法确定其热分解动力学参数.TG-DTA曲线表明:十水草酸镧分解为四个阶段,前两个阶段为脱水过程,后两个阶段为La_2(C_2O_4)_3的分解过程.实验计算得出四步反应表观活化能E分别为83.92、76.04、136.26、162.61 k J·mol-1左右;指前因子A分别为4.92×10^(10)、6.1×10~7、2.1×10~9、8.46×10~6s-1左右;反应级数n均为1左右,并用Coats-Redfem积分法得出第三步分解机理受F1控制.
文摘稀土草酸盐是目前制备稀土氧化物,尤其是制备具有可控粒度的稀土氧化物常用的前驱体,它具有沉淀物晶型好,易于过滤分解等优点.然而,目前稀土草酸盐热分解的动力学研究较少,因此,采用热重-差热分析法,研究六水草酸镝的热分解过程,通过Kissinger、Ozawa和Crane法计算六水草酸镝的分解动力学参数,通过Coats-Redfern法求出反应的机理函数.结果表明:几种方法计算的分解活化能比较接近,六水草酸镝热分解分2步进行,第1步为1级脱水反应,反应机理函数为F1,表观活化能为62.48 k J/mol,指前因子为1.84×106;第2步也为1级分解反应,反应机理函数为F2,表观活化能为106.42 k J/mol,指前因子为2.79×107.