期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
U-net深度学习神经网络结合面向对象的城市森林高分影像信息提取
被引量:
3
1
作者
蔡淑颖
何少柏
+1 位作者
韩凝
杜华强
《园林》
2020年第11期28-37,共10页
城市森林结构复杂、分布破碎,采用高分遥感数据,通过深度学习等智能机器学习算法精准监测提取城市森林信息,是城市森林资源智能监测管理的关键性基础环节。本文以杭州市余杭区部分城区WorldView-3高分卫星遥感影像为数据源,采用改进的U-...
城市森林结构复杂、分布破碎,采用高分遥感数据,通过深度学习等智能机器学习算法精准监测提取城市森林信息,是城市森林资源智能监测管理的关键性基础环节。本文以杭州市余杭区部分城区WorldView-3高分卫星遥感影像为数据源,采用改进的U-net深度学习神经网络,并结合面向对象多尺度分割方法,研究城市森林智能精准提取。首先,通过大量的训练数据获得最佳模型参数;其次,使用U-net网络进行语义分割得到分类结果图;最后,结合面向对象最优分割修正深度学习城市森林提取结果,从而最终得到城市森林提取结果。研究表明,(1)基于改进的U-net深度学习神经网络得到的城市森林总体分类精度达90.50%,Kappa系数为0.886;(2)经面向对象分割对U-net深度学习神经网络结果中的"椒盐现象"及边界地物错分现象进行修正后,分类总精度提高到93.83%,Kappa系数提高到0.9295。因此,U-net网络模型结合面向对象方法可以有效地改善遥感目标识别及地物分类的效果,保证城市碎片化植被提取与植被区域边界的准确性,从而提高城市森林植被提取精度。
展开更多
关键词
城市森林
WorldView-3
U-net
深度学习
面向对象
下载PDF
职称材料
题名
U-net深度学习神经网络结合面向对象的城市森林高分影像信息提取
被引量:
3
1
作者
蔡淑颖
何少柏
韩凝
杜华强
机构
浙江农林大学
不详
浙江农林大学环境与资源学院
出处
《园林》
2020年第11期28-37,共10页
基金
国家自然科学基金“城市森林资源智能监测及其生态功能智慧感知研究”(编号:U1809208)。
文摘
城市森林结构复杂、分布破碎,采用高分遥感数据,通过深度学习等智能机器学习算法精准监测提取城市森林信息,是城市森林资源智能监测管理的关键性基础环节。本文以杭州市余杭区部分城区WorldView-3高分卫星遥感影像为数据源,采用改进的U-net深度学习神经网络,并结合面向对象多尺度分割方法,研究城市森林智能精准提取。首先,通过大量的训练数据获得最佳模型参数;其次,使用U-net网络进行语义分割得到分类结果图;最后,结合面向对象最优分割修正深度学习城市森林提取结果,从而最终得到城市森林提取结果。研究表明,(1)基于改进的U-net深度学习神经网络得到的城市森林总体分类精度达90.50%,Kappa系数为0.886;(2)经面向对象分割对U-net深度学习神经网络结果中的"椒盐现象"及边界地物错分现象进行修正后,分类总精度提高到93.83%,Kappa系数提高到0.9295。因此,U-net网络模型结合面向对象方法可以有效地改善遥感目标识别及地物分类的效果,保证城市碎片化植被提取与植被区域边界的准确性,从而提高城市森林植被提取精度。
关键词
城市森林
WorldView-3
U-net
深度学习
面向对象
Keywords
urban forest
WorldView-3
U-net
deep learning
object-oriented
分类号
TU986 [建筑科学—城市规划与设计]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
U-net深度学习神经网络结合面向对象的城市森林高分影像信息提取
蔡淑颖
何少柏
韩凝
杜华强
《园林》
2020
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部