对 Ga As/ Al Ga As量子阱红外探测器器件进行显微荧光光谱 (μ- PL)测量 ,光谱中表征势垒、势阱基态间光跃迁能量位置的荧光峰直接与势垒中 Al含量相关 ,通过光谱实验上对势垒和量子阱带间跃迁能量的确定并结合有效质量理论的计算 ,获...对 Ga As/ Al Ga As量子阱红外探测器器件进行显微荧光光谱 (μ- PL)测量 ,光谱中表征势垒、势阱基态间光跃迁能量位置的荧光峰直接与势垒中 Al含量相关 ,通过光谱实验上对势垒和量子阱带间跃迁能量的确定并结合有效质量理论的计算 ,获得了 Al组分和阱宽值 ,并由此推算出相应的红外探测响应波长 ,与光电流谱的实验结果相比吻合良好 .展开更多
用分子束外延系统 (MBE)生长了 Ga As/ Al Ga As非对称耦合双量子阱 (ACDQW) ,用组合离子注入的方法 ,在同一块衬底上获得了不同注入离子 As+ 、 H+ 和不同注入剂量的 Ga As/ Al Ga As非对称耦合双量子阱单元 ,在未经快速热退火的条件...用分子束外延系统 (MBE)生长了 Ga As/ Al Ga As非对称耦合双量子阱 (ACDQW) ,用组合离子注入的方法 ,在同一块衬底上获得了不同注入离子 As+ 、 H+ 和不同注入剂量的 Ga As/ Al Ga As非对称耦合双量子阱单元 ,在未经快速热退火的条件下 ,于常温下测量了光调制反射光谱 ,发现各单元的子带间跃迁能量最大变化范围可达80 me V .展开更多
用分子束外延系统生长了 Ga As/ Al Ga As非对称耦合双量子阱 (ACDQW) ,用组合注入的方法 ,在同一块衬底上获得了不同注入离子和不同注入剂量的耦合量子阱单元 ,没有经过快速热退火过程 ,在常温下测量了不同单元的显微光荧光谱 ,发现子...用分子束外延系统生长了 Ga As/ Al Ga As非对称耦合双量子阱 (ACDQW) ,用组合注入的方法 ,在同一块衬底上获得了不同注入离子和不同注入剂量的耦合量子阱单元 ,没有经过快速热退火过程 ,在常温下测量了不同单元的显微光荧光谱 ,发现子带间跃迁能量最大变化范围接近 10 0 me V。展开更多
文摘用分子束外延系统 (MBE)生长了 Ga As/ Al Ga As非对称耦合双量子阱 (ACDQW) ,用组合离子注入的方法 ,在同一块衬底上获得了不同注入离子 As+ 、 H+ 和不同注入剂量的 Ga As/ Al Ga As非对称耦合双量子阱单元 ,在未经快速热退火的条件下 ,于常温下测量了光调制反射光谱 ,发现各单元的子带间跃迁能量最大变化范围可达80 me V .
文摘用分子束外延系统生长了 Ga As/ Al Ga As非对称耦合双量子阱 (ACDQW) ,用组合注入的方法 ,在同一块衬底上获得了不同注入离子和不同注入剂量的耦合量子阱单元 ,没有经过快速热退火过程 ,在常温下测量了不同单元的显微光荧光谱 ,发现子带间跃迁能量最大变化范围接近 10 0 me V。