期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7模型的复杂环境下鸭蛋识别定位 被引量:9
1
作者 祝志慧 何昱廷 +3 位作者 李沃霖 蔡紫荆 王巧华 马美湖 《农业工程学报》 EI CAS CSCD 北大核心 2023年第11期274-285,共12页
在干扰、遮挡等复杂环境下,对鸭蛋进行快速、准确识别定位是开发鸭蛋拾取机器人的关键技术,该研究提出一种基于改进YOLOv7(you only look once)模型的复杂环境鸭蛋检测方法,在主干网络加入卷积注意力模块(CBAM,convolutional block atte... 在干扰、遮挡等复杂环境下,对鸭蛋进行快速、准确识别定位是开发鸭蛋拾取机器人的关键技术,该研究提出一种基于改进YOLOv7(you only look once)模型的复杂环境鸭蛋检测方法,在主干网络加入卷积注意力模块(CBAM,convolutional block attention module),加强网络信息传递,提高模型对特征的敏感程度,减少复杂环境对鸭蛋识别干扰;利用深度可分离卷积(DSC,depthwise separable convolution)、调整空间金字塔池化结构(SPP,spatial pyramid pooling),降低模型参数数量和运算成本。试验结果表明,与SSD、YOLOv4、YOLOv5_M以及YOLOv7相比,改进YOLOv7模型的F1分数(F1 score)分别提高了8.3、10.1、8.7和7.6个百分点,F1分数达95.5%,占内存空间68.7 M,单张图片检测平均用时0.022 s。与不同模型在复杂环境的检测对比试验表明,改进的YOLOv7模型,在遮挡、簇拥、昏暗等复杂环境下,均能对鸭蛋进行准确快速的识别定位,具有较强鲁棒性和适用性。该研究可为后续开发鸭蛋拾取机器人提供技术支撑。 展开更多
关键词 图像处理 目标检测 YOLOv7 深度学习 鸭蛋 复杂环境
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部