期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
玉米芯基多孔碳的制备及其在锂硫电池中的应用 被引量:4
1
作者 燕映霖 魏一奇 +4 位作者 李巧乐 陈世煜 蔺佳明 杨蓉 许云华 《西安理工大学学报》 CAS 北大核心 2019年第1期40-46,共7页
锂硫电池理论比容量高、成本低、环境友好,但硫正极仍面临导电性差、容量衰减快、体积膨胀等问题。采用生物质废弃物玉米芯作为碳源,KOH为活化剂,通过不同工艺制备了三种多孔碳材料。利用XRD、SEM、BET等对多孔碳产品的物相形貌等进行... 锂硫电池理论比容量高、成本低、环境友好,但硫正极仍面临导电性差、容量衰减快、体积膨胀等问题。采用生物质废弃物玉米芯作为碳源,KOH为活化剂,通过不同工艺制备了三种多孔碳材料。利用XRD、SEM、BET等对多孔碳产品的物相形貌等进行表征后发现,采用一次活化工艺所制备的多孔碳材料具有大量相互贯通的孔道结构,故具有高的比表面积(1 578.64 m^2/g)与较大的孔容(0.93 cm^3/g)。覆硫后用于锂硫电池正极,可作为三维导电骨架显著提高硫正极的导电率,并对单质硫表现出较高的吸附性能。电化学测试表明改性正极材料首次放电比容量为1 050.7 mAh/g,50周循环后容量保持率为50.4%。综合对比表明,一次活化工艺为利用此类生物质废弃物制备多孔碳材料提供了优化方案。 展开更多
关键词 锂硫电池 正极 玉米芯 生物质 多孔碳 高比表面积
下载PDF
Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能 被引量:2
2
作者 蔺佳明 赵桃林 王育华 《材料工程》 EI CAS CSCD 北大核心 2020年第3期112-120,共9页
富锂锰基材料因其具有较高的充放电比容量而备受关注。针对其首次库仑效率低、循环和倍率性能差的问题,将具有三维Li^+通道的锂离子导体Li2ZrO3引入至富锂锰基正极材料Li[Li0.2Ni0.2Mn0.6]O2的表面对其进行包覆改性研究。通过XRD,TEM,SE... 富锂锰基材料因其具有较高的充放电比容量而备受关注。针对其首次库仑效率低、循环和倍率性能差的问题,将具有三维Li^+通道的锂离子导体Li2ZrO3引入至富锂锰基正极材料Li[Li0.2Ni0.2Mn0.6]O2的表面对其进行包覆改性研究。通过XRD,TEM,SEM,EDS综合分析可知:Li2ZrO3成功包覆到样品表面。包覆层厚度为3 nm(包覆量1%,质量分数)时复合材料的电化学性能得到显著提升。0.1 C(1 C=200 mAh·g^-1)倍率下首次放电比容量可达271.5 mAh·g^-1,库仑效率为72.4%,降低了首次不可逆容量损失;0.5 C下循环100周次后放电比容量为191.5 mAh·g^-1,容量保持率为89.5%,5 C倍率放电比容量为75 mAh·g^-1,倍率性能提升。适当厚度的均匀Li2ZrO3包覆层可在样品表面形成核壳结构使样品更稳定,减少表面副反应,阻止生成较厚SEI膜,这得益于Li2ZrO3本身的高电导率、高电化学稳定性和较好的锂离子传导性。 展开更多
关键词 锂离子电池 富锂锰基材料 Li2ZrO3 包覆改性
下载PDF
固相法制备锂离子电池正极材料LiMnxFe1-xPO4及其性能研究
3
作者 蔺佳明 宋远博 +1 位作者 赵桃林 王育华 《石家庄铁道大学学报(自然科学版)》 2019年第2期121-126,共6页
以LiFePO4为研究对象,通过Mn(Mn源为MnC2O4·2H2O)部分替代Fe(Fe源为FeC2O4·2H2O)的同时,采用固相法对替代材料LiMnxFe1-xPO4/C(x=0、0.1、0.3、0.5)进行碳包覆,以提高其放电比容量、电导率或放电平台。通过XRD、TEM、SEM和充... 以LiFePO4为研究对象,通过Mn(Mn源为MnC2O4·2H2O)部分替代Fe(Fe源为FeC2O4·2H2O)的同时,采用固相法对替代材料LiMnxFe1-xPO4/C(x=0、0.1、0.3、0.5)进行碳包覆,以提高其放电比容量、电导率或放电平台。通过XRD、TEM、SEM和充放电测试,研究了磷酸锰铁锂的晶体结构、形貌以及电化学性能。结果表明:包覆掺杂后的材料仍保持橄榄石形晶体结构,碳包覆和掺杂Mn没有对原材料的形貌产生明显影响。制备的LiMn0.1Fe0.9PO4/C正极材料具有最佳的电化学性能,其0.2C倍率下的放电比容量为124.8mAh/g,放电平台为3.4V,阻抗为43.8Ω。在1C倍率下循环30周之后,放电比容量仍有120mAh/g,容量保持率为97.71%,具有较优的循环性能。 展开更多
关键词 锂离子电池 正极材料 磷酸锰铁锂
下载PDF
过渡金属硫化物改性锂硫电池正极材料 被引量:6
4
作者 樊潮江 燕映霖 +3 位作者 陈利萍 陈世煜 蔺佳明 杨蓉 《化学进展》 SCIE CAS CSCD 北大核心 2019年第8期1166-1176,共11页
锂硫电池(LSBs)由于单质硫正极具有超高能量密度(2600 Wh/kg)和超高理论比容量(1675 mAh/g),且环境友好、成本低廉,被认为是最有前景的储能体系之一。然而,硫正极的绝缘性和严重体积膨胀以及多硫化物(LiPSs)的"穿梭效应"等问... 锂硫电池(LSBs)由于单质硫正极具有超高能量密度(2600 Wh/kg)和超高理论比容量(1675 mAh/g),且环境友好、成本低廉,被认为是最有前景的储能体系之一。然而,硫正极的绝缘性和严重体积膨胀以及多硫化物(LiPSs)的"穿梭效应"等问题导致活性物质利用率低、循环稳定性差及电化学反应动力不足,严重阻碍了LSBs的商业化发展。最新研究表明,过渡金属硫化物作为载体或添加剂能够显著改善LSBs正极材料的电化学性能。本文从等效/共正极作用、导电性增强作用、LiPSs吸附作用和电化学反应催化作用四个方面梳理了过渡金属硫化物在LSBs正极材料中的改性机理,并指出多元过渡金属硫化物复合﹑纳米结晶和量子化作为增加比表面积和活性位点的方法是过渡金属硫化物用于锂硫电池正极材料的重要发展方向,可大幅提升LSBs的电化学性能。 展开更多
关键词 锂硫电池 过渡金属硫化物 电化学性能 穿梭效应 吸附作用 催化作用
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部