地震随机反演方法由于井间数据缺失,反演结果的横向连续性较差。且反演效率低、反演结果随机性强。为此,我们提出基于地震波形约束的地质统计学反演方法。用地震数据的相关系数来衡量地震波形的相似程度,代替传统的变差函数进行序贯高...地震随机反演方法由于井间数据缺失,反演结果的横向连续性较差。且反演效率低、反演结果随机性强。为此,我们提出基于地震波形约束的地质统计学反演方法。用地震数据的相关系数来衡量地震波形的相似程度,代替传统的变差函数进行序贯高斯模拟。在贝叶斯框架下,结合地震数据的约束,利用马尔科夫链-蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法对模拟结果进行随机扰动和全局寻优,获得优化的参数反演结果。模型测试结果表明,基于地震波形约束的初始模型较为精确地刻画了地下储层的空间结构。对其进行迭代优化可以加快马尔科夫链的收敛速度,有效提高反演结果的精度。本文将提出的地质统计学反演方法用于某油田实际地震数据,在随机模拟过程和目标函数的约束中,充分挖掘了地震波形蕴含的地质信息,并为实现多数据联合约束地震反演提供了理论依据。展开更多
In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is ...In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution.展开更多
基金supported by the National Natural Science Foundation of China[Grant Nos.42174146,42074136,42174144]Innovation Fund Project for Graduate Students of China University of Petroleum(East China)[Grant No.23CX04015A].
文摘地震随机反演方法由于井间数据缺失,反演结果的横向连续性较差。且反演效率低、反演结果随机性强。为此,我们提出基于地震波形约束的地质统计学反演方法。用地震数据的相关系数来衡量地震波形的相似程度,代替传统的变差函数进行序贯高斯模拟。在贝叶斯框架下,结合地震数据的约束,利用马尔科夫链-蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法对模拟结果进行随机扰动和全局寻优,获得优化的参数反演结果。模型测试结果表明,基于地震波形约束的初始模型较为精确地刻画了地下储层的空间结构。对其进行迭代优化可以加快马尔科夫链的收敛速度,有效提高反演结果的精度。本文将提出的地质统计学反演方法用于某油田实际地震数据,在随机模拟过程和目标函数的约束中,充分挖掘了地震波形蕴含的地质信息,并为实现多数据联合约束地震反演提供了理论依据。
基金the National Science Foundation of China(No.42074136 and U19B2008)the Major National Science and Technology Projects(No.2016ZX05027004-001 and 2016ZX05002-005-009)+1 种基金the Fundamental Research Funds for the Central Universities(No.19CX02007A)China Postdoctoral Science Foundation(No.2020M672170).
文摘In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution.