期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多感知机制融合的家居物品检测方法
1
作者 郭彤颖 薛亚栋 吴俊卓 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第2期213-220,共8页
家居物品检测是家庭服务机器人执行目标抓取任务的关键,针对日常家居场景背景复杂、家居物品密集、小目标物品类型多而导致检测难度较大的问题,提出一种基于多感知机制融合的家居物品检测方法.首先,在YOLOX的颈部网络部分加入坐标注意... 家居物品检测是家庭服务机器人执行目标抓取任务的关键,针对日常家居场景背景复杂、家居物品密集、小目标物品类型多而导致检测难度较大的问题,提出一种基于多感知机制融合的家居物品检测方法.首先,在YOLOX的颈部网络部分加入坐标注意力机制模块,减少繁杂信息带来的影响;其次,采用基于多感知融合的dynamic head对YOLOX的检测头进行改进,提升对小目标物品的检测精度;最后,在损失函数中加入focal loss,减小因正负样本数量不平衡而带来的误差.在PyTorch环境下,使用自制的家居物品数据集对改进后的YOLOX算法进行消融实验,并与其他6种目标检测算法进行对比实验.实验结果表明,所提方法对家居物品检测的mAP为58.34%,帧速为45.35帧/s,在满足算法检测实时性的同时,有效地提高了对家居物品的检测精度. 展开更多
关键词 YOLOX算法 目标检测 dynamic head focal loss 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部