期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合改进A^(*)与DWA算法的机器人动态路径规划
被引量:
38
1
作者
刘建娟
薛礼啟
+1 位作者
张会娟
刘忠璞
《计算机工程与应用》
CSCD
北大核心
2021年第15期73-81,共9页
传统A^(*)算法是移动机器人全局路径规划的常用算法之一,但是算法搜索效率低、规划路径转折点多、面对复杂环境中随机出现的动态障碍物无法实现动态路径规划。针对这些问题,在考虑全局最优的基础上将改进A^(*)与DWA算法融合,量化环境中...
传统A^(*)算法是移动机器人全局路径规划的常用算法之一,但是算法搜索效率低、规划路径转折点多、面对复杂环境中随机出现的动态障碍物无法实现动态路径规划。针对这些问题,在考虑全局最优的基础上将改进A^(*)与DWA算法融合,量化环境中的障碍物信息,根据此信息调节A^(*)算法启发函数的权重,提高算法的效率和灵活性。基于Floyd算法思想设计路径节点优化算法,删除冗余节点,减少转折,提高路径平滑度。基于全局最优设计DWA算法的动态窗口评价函数,用于区分已知障碍物和未知动态、静态障碍物,提取改进A^(*)算法规划路径的关键点作为DWA算法的临时目标点,在全局最优的基础上实现了改进A^(*)与DWA算法融合。实验结果表明,在复杂环境中,融合算法规划路径既能保证全局最优,又能及时有效地躲避环境中出现的动静态障碍物,实现复杂环境中的动态路径规划。
展开更多
关键词
路径规划
改进A^(*)算法
DWA算法
融合算法
下载PDF
职称材料
题名
融合改进A^(*)与DWA算法的机器人动态路径规划
被引量:
38
1
作者
刘建娟
薛礼啟
张会娟
刘忠璞
机构
河南工业大学电气工程学院
河南工业大学机电设备及测控技术研究所
出处
《计算机工程与应用》
CSCD
北大核心
2021年第15期73-81,共9页
基金
国家自然科学基金(61304259)
国家自然科学基金青年基金(51805148)
+3 种基金
河南省高校青年骨干教师资助计划(2017GGJS071)
河南省科技攻关计划项目(192102210066)
河南工业大学河南省属高校基础研究基金(2019QNJH28)
河南工业大学青年骨干教师资助计划(21420120)。
文摘
传统A^(*)算法是移动机器人全局路径规划的常用算法之一,但是算法搜索效率低、规划路径转折点多、面对复杂环境中随机出现的动态障碍物无法实现动态路径规划。针对这些问题,在考虑全局最优的基础上将改进A^(*)与DWA算法融合,量化环境中的障碍物信息,根据此信息调节A^(*)算法启发函数的权重,提高算法的效率和灵活性。基于Floyd算法思想设计路径节点优化算法,删除冗余节点,减少转折,提高路径平滑度。基于全局最优设计DWA算法的动态窗口评价函数,用于区分已知障碍物和未知动态、静态障碍物,提取改进A^(*)算法规划路径的关键点作为DWA算法的临时目标点,在全局最优的基础上实现了改进A^(*)与DWA算法融合。实验结果表明,在复杂环境中,融合算法规划路径既能保证全局最优,又能及时有效地躲避环境中出现的动静态障碍物,实现复杂环境中的动态路径规划。
关键词
路径规划
改进A^(*)算法
DWA算法
融合算法
Keywords
path planning
improved A^(*) algorithm
DWA algorithm
fusion algorithm
分类号
TP242.6 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合改进A^(*)与DWA算法的机器人动态路径规划
刘建娟
薛礼啟
张会娟
刘忠璞
《计算机工程与应用》
CSCD
北大核心
2021
38
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部