期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络和Transformer的高效图像超分辨率重建
1
作者 李邦源 杨家全 +3 位作者 薛若漪 张晓宇 汪航 孙宏滨 《云南电力技术》 2024年第2期41-48,共8页
深度学习推动了图像超分辨率重建技术的显著进步,但复杂的操作导致计算和内存成本高昂,限制了其实际应用。为此,提出了一种新颖的算法,融合了Transformer和卷积神经网络,同时采用膨胀卷积和深度可分离卷积技术。在五个基准数据集上的实... 深度学习推动了图像超分辨率重建技术的显著进步,但复杂的操作导致计算和内存成本高昂,限制了其实际应用。为此,提出了一种新颖的算法,融合了Transformer和卷积神经网络,同时采用膨胀卷积和深度可分离卷积技术。在五个基准数据集上的实验证明,所提EHN模型能够高效提取超分辨率特征,在更少参数和推理时间下实现与现有方法相当甚至更好的超分辨率效果。特别地,在×2、×3和×4放大倍数下,EHN的推理时间仅为现有网络的18.4%、18.9%和20.3%,这一优势对于处理大量图像的场景至关重要,能够显著减少计算时间和资源消耗,提升整体效率。 展开更多
关键词 图像超分辨率 TRANSFORMER 卷积神经网络 膨胀卷积 深度可分离卷积
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部