期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Spark Streaming的视频大数据并行处理方法 被引量:6
1
作者 张元鸣 虞家睿 +2 位作者 陆佳炜 高飞 肖刚 《计算机工程与科学》 CSCD 北大核心 2021年第10期1736-1743,共8页
视频设备被广泛应用于公共区域、智能交通和工业生产等许多领域,其产生的视频数据具有体量巨大、速度极快、价值稀疏和完全非结构化等大数据典型特征。为了进一步提高视频大数据的处理性能,提出了一种基于Spark Streaming的视频大数据... 视频设备被广泛应用于公共区域、智能交通和工业生产等许多领域,其产生的视频数据具有体量巨大、速度极快、价值稀疏和完全非结构化等大数据典型特征。为了进一步提高视频大数据的处理性能,提出了一种基于Spark Streaming的视频大数据并行处理方法,设计了基于Spark Streaming的视频大数据并行处理框架,针对帧间无关分析算法和帧间相关分析算法分别给出了并行化策略,前者利用数据并行机制将去冗余后的视频帧映射到不同节点并行处理,后者利用流水线并行机制将分析算法的各个算子根据依赖关系映射到不同节点并行处理;结合实际应用对并行处理框架和并行化策略进行了评价,设计了电梯乘客数并行检测算法和电梯门异常并行检测算法,当节点数增加到16个时,电梯乘客数检测算法的性能加速比为615%,电梯门异常检测的性能加速比为253%。 展开更多
关键词 视频大数据 并行处理策略 帧间相关分析 帧间无关分析
下载PDF
面向MapReduce的中间数据传输流水线优化机制 被引量:4
2
作者 张元鸣 虞家睿 +2 位作者 蒋建波 陆佳炜 肖刚 《计算机科学》 CSCD 北大核心 2021年第2期41-46,共6页
MapReduce是一种适用于大数据处理的重要并行计算框架,通过在大量集群节点上并行执行多个任务,极大地提高了数据的处理性能。然而,由于中间数据需要等到Mapper任务完成之后才能被发送给Reducer任务,由此导致的大量传输延迟成为MapReduc... MapReduce是一种适用于大数据处理的重要并行计算框架,通过在大量集群节点上并行执行多个任务,极大地提高了数据的处理性能。然而,由于中间数据需要等到Mapper任务完成之后才能被发送给Reducer任务,由此导致的大量传输延迟成为MapReduce框架性能的重要瓶颈。为此,文中提出了一种面向MapReduce的中间数据传输流水线优化机制,将有效计算与中间数据传输解耦,以流水线的方式重叠执行各个阶段,有效隐藏数据传输开销。文中还给出了中间数据传输流水线执行机制和实现策略,包括流水线划分、数据细分、数据归并和数据传输粒度等。在公开数据集上对所提中间数据传输流水线优化机制进行了评价,当Shuffle数据量较大时,该优化机制比默认框架的整体性能提高了60.2%。 展开更多
关键词 MAPREDUCE框架 中间数据传输 传输延迟 流水线 溢写文件归并
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部