为研究江苏省徐州市的土壤水分时空分布及动态变化,基于MODIS数据和站点气象数据,利用蒸散发双层模型和考虑土壤水分可供率的改进双层模型分别计算实际蒸散发量,利用Penman-Monteith模型计算区域潜在蒸散发量,计算获得作物缺水指数(crop...为研究江苏省徐州市的土壤水分时空分布及动态变化,基于MODIS数据和站点气象数据,利用蒸散发双层模型和考虑土壤水分可供率的改进双层模型分别计算实际蒸散发量,利用Penman-Monteith模型计算区域潜在蒸散发量,计算获得作物缺水指数(crop water stress index,CWSI),并与2010年7月和11月的土壤相对含水量实测数据分别进行回归分析建模,得到了土壤含水量分布图。结果表明:基于蒸散发双层模型的土壤含水量估算结果与实测值的决定系数分别为0.53和0.72,平均相对误差分别为5.89%和9.6%;对双层模型进行改进后,土壤含水量估算结果与实测值的决定系数都为0.84,平均相对误差分别为3.47%和6.03%,利用改进后的双层模型对土壤相对含水量进行估算效果更好。展开更多
文摘为研究江苏省徐州市的土壤水分时空分布及动态变化,基于MODIS数据和站点气象数据,利用蒸散发双层模型和考虑土壤水分可供率的改进双层模型分别计算实际蒸散发量,利用Penman-Monteith模型计算区域潜在蒸散发量,计算获得作物缺水指数(crop water stress index,CWSI),并与2010年7月和11月的土壤相对含水量实测数据分别进行回归分析建模,得到了土壤含水量分布图。结果表明:基于蒸散发双层模型的土壤含水量估算结果与实测值的决定系数分别为0.53和0.72,平均相对误差分别为5.89%和9.6%;对双层模型进行改进后,土壤含水量估算结果与实测值的决定系数都为0.84,平均相对误差分别为3.47%和6.03%,利用改进后的双层模型对土壤相对含水量进行估算效果更好。