利用改进的70 k J高能量电磁脉冲设备,在最佳焊接工艺参数下(脉冲电流750k A,电压17 k V,频率18 k Hz),实现了高强度的铝/钢电磁脉冲焊接。进行扫描电镜对接头微观形貌观察和元素分布的EDS分析,结果表明:铝/钢焊接界面呈小波状形貌,界...利用改进的70 k J高能量电磁脉冲设备,在最佳焊接工艺参数下(脉冲电流750k A,电压17 k V,频率18 k Hz),实现了高强度的铝/钢电磁脉冲焊接。进行扫描电镜对接头微观形貌观察和元素分布的EDS分析,结果表明:铝/钢焊接界面呈小波状形貌,界面波幅和波长比值是0.27,界面性能比较稳定;接头界面存在5~13μm的过渡区,点扫描元素含量并取其均值,铝为75.33%,铁为23.23%,推断生成Fe Al3金属间化合物;铝基体到结合界面硬度逐渐增大,钢基体到结合界面硬度逐渐减小;拉伸试样断裂位置在铝合金近搭接接头处,断口形貌呈现大小、深浅不一的韧窝塑性断裂,第二相粒子产生空洞形核后长大、聚集和断裂的特征,研究结果可为电磁脉冲焊接提供理论数据。展开更多
文摘利用改进的70 k J高能量电磁脉冲设备,在最佳焊接工艺参数下(脉冲电流750k A,电压17 k V,频率18 k Hz),实现了高强度的铝/钢电磁脉冲焊接。进行扫描电镜对接头微观形貌观察和元素分布的EDS分析,结果表明:铝/钢焊接界面呈小波状形貌,界面波幅和波长比值是0.27,界面性能比较稳定;接头界面存在5~13μm的过渡区,点扫描元素含量并取其均值,铝为75.33%,铁为23.23%,推断生成Fe Al3金属间化合物;铝基体到结合界面硬度逐渐增大,钢基体到结合界面硬度逐渐减小;拉伸试样断裂位置在铝合金近搭接接头处,断口形貌呈现大小、深浅不一的韧窝塑性断裂,第二相粒子产生空洞形核后长大、聚集和断裂的特征,研究结果可为电磁脉冲焊接提供理论数据。