期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于证据图推理的文档级实体关系抽取
1
作者
张钰
王嘉
+1 位作者
袁建园
张益嘉
《情报杂志》
CSSCI
北大核心
2024年第7期122-130,共9页
[研究目的]为缓解文档级实体关系抽取任务中存在的句子噪声问题,提高文档级实体关系抽取性能,提出一种基于证据图推理的文档级实体关系抽取方法,为文档级实体关系抽取和知识发现研究提供参考。[研究方法]通过启发式规则捕获实体对间关...
[研究目的]为缓解文档级实体关系抽取任务中存在的句子噪声问题,提高文档级实体关系抽取性能,提出一种基于证据图推理的文档级实体关系抽取方法,为文档级实体关系抽取和知识发现研究提供参考。[研究方法]通过启发式规则捕获实体对间关系推理所需证据句路径信息;引入图结构学习思想将证据句路径信息融入异构文档图;基于关系图卷积网络进行关系推理以提升文档图对证据句信息的聚合能力;采用前馈神经网络对实体关系进行预测,实现文档级实体关系高效抽取。[研究结论]所提出的模型在国际公开文档级评测数据集CDR和GDA上F1值分别达到71.3%和85.4%,较基准模型EIDER提高1.2%与1.1%。实验结果表明该方法能够有效选择实体关系推理所需证据路径,提升文档级实体关系抽取性能。
展开更多
关键词
文档级实体关系抽取
证据推理路径
图神经网络
启发式规则
知识发现
下载PDF
职称材料
题名
基于证据图推理的文档级实体关系抽取
1
作者
张钰
王嘉
袁建园
张益嘉
机构
大连理工大学马克思主义学院
大连海事大学信息科学技术学院
出处
《情报杂志》
CSSCI
北大核心
2024年第7期122-130,共9页
基金
辽宁省社会科学规划基金项目“新冠病毒疫情下的国际舆情分析研究”(编号:L20BTQ008)研究成果。
文摘
[研究目的]为缓解文档级实体关系抽取任务中存在的句子噪声问题,提高文档级实体关系抽取性能,提出一种基于证据图推理的文档级实体关系抽取方法,为文档级实体关系抽取和知识发现研究提供参考。[研究方法]通过启发式规则捕获实体对间关系推理所需证据句路径信息;引入图结构学习思想将证据句路径信息融入异构文档图;基于关系图卷积网络进行关系推理以提升文档图对证据句信息的聚合能力;采用前馈神经网络对实体关系进行预测,实现文档级实体关系高效抽取。[研究结论]所提出的模型在国际公开文档级评测数据集CDR和GDA上F1值分别达到71.3%和85.4%,较基准模型EIDER提高1.2%与1.1%。实验结果表明该方法能够有效选择实体关系推理所需证据路径,提升文档级实体关系抽取性能。
关键词
文档级实体关系抽取
证据推理路径
图神经网络
启发式规则
知识发现
Keywords
document-level entity relation extraction
evidence reasoning paths
graph neural network
heuristic rules
knowledge discovery
分类号
TP393 [自动化与计算机技术—计算机应用技术]
G250 [文化科学—图书馆学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于证据图推理的文档级实体关系抽取
张钰
王嘉
袁建园
张益嘉
《情报杂志》
CSSCI
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部