分析了在完备度量空间下,映射满足一类积分型压缩不等式的不动点的存在性和惟一性.具体构造了压缩条件integral from n=0 to d(f(x),f(y))(g(t)dt)≤b integral from n=0 to d(x,f(x))(g(t)dt)+b integral from n=0 to d(y,f(y))(g(t)dt...分析了在完备度量空间下,映射满足一类积分型压缩不等式的不动点的存在性和惟一性.具体构造了压缩条件integral from n=0 to d(f(x),f(y))(g(t)dt)≤b integral from n=0 to d(x,f(x))(g(t)dt)+b integral from n=0 to d(y,f(y))(g(t)dt)和integral from n=0 to d(f(x),f(y))(g(t)dt)≤c integral from n=0 to d(x,f(y))(g(t)dt)+c integral from n=0 to d(y,f(x))(g(t)dt),其中定义映射f:X→X,b,c∈[0,1/2),g:[0,+∞)→[0,+∞)为有限非负勒贝格可积映射,非负即ε>0都有integral from n=0 to ε (g(t)dt)>0.展开更多
文摘分析了在完备度量空间下,映射满足一类积分型压缩不等式的不动点的存在性和惟一性.具体构造了压缩条件integral from n=0 to d(f(x),f(y))(g(t)dt)≤b integral from n=0 to d(x,f(x))(g(t)dt)+b integral from n=0 to d(y,f(y))(g(t)dt)和integral from n=0 to d(f(x),f(y))(g(t)dt)≤c integral from n=0 to d(x,f(y))(g(t)dt)+c integral from n=0 to d(y,f(x))(g(t)dt),其中定义映射f:X→X,b,c∈[0,1/2),g:[0,+∞)→[0,+∞)为有限非负勒贝格可积映射,非负即ε>0都有integral from n=0 to ε (g(t)dt)>0.