Three-magnon scattering,a nonlinear process in which a high-energy magnon splits into two low-energy magnons with energy and momentum conservation,has been widely studied in the magnonics community.Here,we report expe...Three-magnon scattering,a nonlinear process in which a high-energy magnon splits into two low-energy magnons with energy and momentum conservation,has been widely studied in the magnonics community.Here,we report experimental observation of nonlinear three-magnon scattering in La_(0.67)Sr_(0.33)MnO_(3)thin films with low magnetic damping(~10^(-4))by all-electric and angle-resolved spin wave spectroscopy.The reflection spectra of the spin wave resonance with high-power excitation at Damon–Eshbach configuration demonstrate a scattering regime with gradual signal disappearance,where a magnon of Damon–Eshbach mode decays into two magnons of volume mode above the threshold power(-10 dBm)of the injected microwave.The nonlinear scattering is only allowed at low-field regime and the calculated dispersions of dipole-exchange spin wave claim the mechanism of allowed and forbidden three-magnon scattering.The films and heterostructures of La_(0.67)Sr_(0.33)MnO_(3)have been already demonstrated with rich physical phenomena and great versatility,in this work the nonlinear magnetic dynamics of La_(0.67)Sr_(0.33)MnO_(3)thin films is revealed,which offer more possibility for applications to oxide magnonics and nonlinear magnonic devices.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1402801)the support from the China Post-doctoral Science Foundation Funded Project(Grant No.2021M700344)+1 种基金by the National Natural Science Foundation of China(Grant Nos.12074026,12104208,and U1801661)the support from the Academic Excellence Foundation of BUAA for PhD Students。
文摘Three-magnon scattering,a nonlinear process in which a high-energy magnon splits into two low-energy magnons with energy and momentum conservation,has been widely studied in the magnonics community.Here,we report experimental observation of nonlinear three-magnon scattering in La_(0.67)Sr_(0.33)MnO_(3)thin films with low magnetic damping(~10^(-4))by all-electric and angle-resolved spin wave spectroscopy.The reflection spectra of the spin wave resonance with high-power excitation at Damon–Eshbach configuration demonstrate a scattering regime with gradual signal disappearance,where a magnon of Damon–Eshbach mode decays into two magnons of volume mode above the threshold power(-10 dBm)of the injected microwave.The nonlinear scattering is only allowed at low-field regime and the calculated dispersions of dipole-exchange spin wave claim the mechanism of allowed and forbidden three-magnon scattering.The films and heterostructures of La_(0.67)Sr_(0.33)MnO_(3)have been already demonstrated with rich physical phenomena and great versatility,in this work the nonlinear magnetic dynamics of La_(0.67)Sr_(0.33)MnO_(3)thin films is revealed,which offer more possibility for applications to oxide magnonics and nonlinear magnonic devices.