Sequential control applied to the International Thermonuclear Experimental Re- actor (ITER) poloidal field converter system for the purpose of reactive power reduction is the subject of this investigation. Due to th...Sequential control applied to the International Thermonuclear Experimental Re- actor (ITER) poloidal field converter system for the purpose of reactive power reduction is the subject of this investigation. Due to the inherent characteristics of thyristor-based phase-controlled converter, the poloidal field converter system consumes a huge amount of reactive power from the grid, which subsequently results in a voltage drop at the 66 kV busbar if no measure is taken. The installation of a static var compensator rated for 750 MVar at the 66 kV busbax is an essential way to compensate reactive power to the grid, which is the most effective measure to solve the problem. However, sequential control of the multi-series converters provides an additional method to improve the natural power factor and thus alleviate the pressure of reactive power demand of the converter system without any additional cost. In the present paper, by comparing with the symmetrical control technique, the advantage of sequential control in reactive power consumption is highlighted. Simulation results based on SIMULINK are found in agreement with the theoretical analysis.展开更多
Nuclear pulse signal needs to be transformed to a suitable pulse shape to remove noise and improve energy resolution of a nuclear spectrometry system. In this paper, a new digital Gaussian shaping method is proposed.A...Nuclear pulse signal needs to be transformed to a suitable pulse shape to remove noise and improve energy resolution of a nuclear spectrometry system. In this paper, a new digital Gaussian shaping method is proposed.According to Sallen-Key analog Gaussian shaping filter circuits, the system function of Sallen-Key analog Gaussian shaping filter is deduced on the basis of Kirchhoff laws. The system function of the digital Gaussian shaping filter based on bilinear transformation is deduced too. The expression of unit impulse response of the digital Gaussian shaping filter is obtained by inverse z-transform. The response of digital Gaussian shaping filter is deduced from convolution sum of the unit impulse response and the digital nuclear pulse signal. The simulation and experimental results show that the digital nuclear pulse has been transformed to a pulse with a pseudo-Gaussian, which confirms the feasibility of the new digital Gaussian pulse shaping algorithm based on bilinear transformation.展开更多
基金supported by International Cooperation Project of Ministry of Science and Technology of China(4.1.P2.CN.01/1A)
文摘Sequential control applied to the International Thermonuclear Experimental Re- actor (ITER) poloidal field converter system for the purpose of reactive power reduction is the subject of this investigation. Due to the inherent characteristics of thyristor-based phase-controlled converter, the poloidal field converter system consumes a huge amount of reactive power from the grid, which subsequently results in a voltage drop at the 66 kV busbar if no measure is taken. The installation of a static var compensator rated for 750 MVar at the 66 kV busbax is an essential way to compensate reactive power to the grid, which is the most effective measure to solve the problem. However, sequential control of the multi-series converters provides an additional method to improve the natural power factor and thus alleviate the pressure of reactive power demand of the converter system without any additional cost. In the present paper, by comparing with the symmetrical control technique, the advantage of sequential control in reactive power consumption is highlighted. Simulation results based on SIMULINK are found in agreement with the theoretical analysis.
基金Supported by National High Technology Research and Development Program of China(No.2012AA061803)Higher Education and Teaching Reform Project of Chendu University of Technology(No.13JGY25)
文摘Nuclear pulse signal needs to be transformed to a suitable pulse shape to remove noise and improve energy resolution of a nuclear spectrometry system. In this paper, a new digital Gaussian shaping method is proposed.According to Sallen-Key analog Gaussian shaping filter circuits, the system function of Sallen-Key analog Gaussian shaping filter is deduced on the basis of Kirchhoff laws. The system function of the digital Gaussian shaping filter based on bilinear transformation is deduced too. The expression of unit impulse response of the digital Gaussian shaping filter is obtained by inverse z-transform. The response of digital Gaussian shaping filter is deduced from convolution sum of the unit impulse response and the digital nuclear pulse signal. The simulation and experimental results show that the digital nuclear pulse has been transformed to a pulse with a pseudo-Gaussian, which confirms the feasibility of the new digital Gaussian pulse shaping algorithm based on bilinear transformation.