通过合适的光响应模型来准确计算植物光合参数是研究植物光合特性的重要手段。为深入了解亚热带蕨类植物的光合特性,采用直角双曲线模型、非直角双曲线模型、指数模型和直角双曲线修正模型等4种常用光响应模型分别对10种亚热带蕨类植物...通过合适的光响应模型来准确计算植物光合参数是研究植物光合特性的重要手段。为深入了解亚热带蕨类植物的光合特性,采用直角双曲线模型、非直角双曲线模型、指数模型和直角双曲线修正模型等4种常用光响应模型分别对10种亚热带蕨类植物进行光响应曲线拟合。通过分析决定系数(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)、光饱和点(LSP)、光补偿点(LCP)、最大净光合速率(P_(nmax))、暗呼吸速率(R_(d))和表观量子效率(AQE)等9种参数,探讨亚热带蕨类植物的光响应模型拟合效果及其光合特性。结果表明:直角双曲线修正模型和非直角双曲线模型对本研究10种亚热带蕨类植物的拟合效果较好,其中直角双曲线修正模型的LSP拟合效果最好,非直角双曲线模型的拟合精度最高。光合参数的聚类分析和TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)综合评价法表明,10种亚热带蕨类植物的光合特性既具有相似性又存在物种特异性。黑鳞耳蕨(Polystichum makinoi(Tagawa)Tagawa)的耐阴性能力最强,金星蕨(Parathelypteris glanduligera(Kunze)Ching)的耐强光能力最强,乌蕨(Stenoloma chusanum Ching)的光合潜能最大。综上所述,非直角双曲线模型和直角双曲线修正模型较适用于亚热带蕨类植物的光响应曲线拟合,10种亚热带蕨类植物在耐阴性能力、耐强光能力和光合潜能等3种光合特性方面表现出了相似性和物种特异性。展开更多
文摘通过合适的光响应模型来准确计算植物光合参数是研究植物光合特性的重要手段。为深入了解亚热带蕨类植物的光合特性,采用直角双曲线模型、非直角双曲线模型、指数模型和直角双曲线修正模型等4种常用光响应模型分别对10种亚热带蕨类植物进行光响应曲线拟合。通过分析决定系数(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)、光饱和点(LSP)、光补偿点(LCP)、最大净光合速率(P_(nmax))、暗呼吸速率(R_(d))和表观量子效率(AQE)等9种参数,探讨亚热带蕨类植物的光响应模型拟合效果及其光合特性。结果表明:直角双曲线修正模型和非直角双曲线模型对本研究10种亚热带蕨类植物的拟合效果较好,其中直角双曲线修正模型的LSP拟合效果最好,非直角双曲线模型的拟合精度最高。光合参数的聚类分析和TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)综合评价法表明,10种亚热带蕨类植物的光合特性既具有相似性又存在物种特异性。黑鳞耳蕨(Polystichum makinoi(Tagawa)Tagawa)的耐阴性能力最强,金星蕨(Parathelypteris glanduligera(Kunze)Ching)的耐强光能力最强,乌蕨(Stenoloma chusanum Ching)的光合潜能最大。综上所述,非直角双曲线模型和直角双曲线修正模型较适用于亚热带蕨类植物的光响应曲线拟合,10种亚热带蕨类植物在耐阴性能力、耐强光能力和光合潜能等3种光合特性方面表现出了相似性和物种特异性。