期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合视点机制与姿态估计的行人再识别方法 被引量:5
1
作者 裴嘉震 徐曾春 胡平 《计算机科学》 CSCD 北大核心 2020年第6期164-169,共6页
行人再识别是视频监控中一项极具挑战性的任务。图像中的遮挡、光照、姿态、视角等因素,会对行人再识别的准确率造成极大影响。为了提高行人再识别的准确率,提出一种融合视点机制与姿态估计的行人再识别方法。首先,采用姿态估计算法Open... 行人再识别是视频监控中一项极具挑战性的任务。图像中的遮挡、光照、姿态、视角等因素,会对行人再识别的准确率造成极大影响。为了提高行人再识别的准确率,提出一种融合视点机制与姿态估计的行人再识别方法。首先,采用姿态估计算法Openpose定位行人关节点;然后,对行人图像进行视图判别以获得视点信息,并根据视点信息与行人关节点位置进行局部区域推荐,生成行人局部图像;接着,将全局图像与局部图像同时输入CNN提取特征;最后,采用特征融合网络将全局与局部的特征融合,以获取更具鲁棒性的特征表示。实验结果表明:提出的方法具有更高的行人再识别准确率,其在CHUK03数据集上的rank 1达到了71.3%,在Market1501和DukeMTMC-reID数据集上的mAP分别达到了63.2%与60.5%。因此,所提方法能够很好地应对行人姿态变化和视角变化等问题。 展开更多
关键词 相机视点 姿态估计 深度学习 行人再识别 特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部