Complex function method and multi-polar coordinate transformation technology are used here to study scattering of circular cavity in right-angle planar space to SH-wave with out-of-plane loading on the horizontal stra...Complex function method and multi-polar coordinate transformation technology are used here to study scattering of circular cavity in right-angle planar space to SH-wave with out-of-plane loading on the horizontal straight boundary. At first, Green function of right-angle planar space which has no circular cavity is constructed; then the scattering solution which satisfies the free stress conditions of the two right-angle boundaries with the circular cavity existing in the space is formulated. Therefore, the total displacement field can be constructed using overlapping principle. An infinite algebraic equations of unknown coefficients existing in the scattering solution field can be gained using multi-polar coordinate and the free stress condition at the boundary of the circular cavity. It can be solved by using limit items in the infinite series which can give a high computation precision. An example is given to illustrate the variations of the tangential stress at the boundary of the circular cavity due to different dimensionless wave numbers, the location of the circular cavity, the loading center and the distributing range of the out-of-plane loading. The results show the efficiency and effectiveness of the mothod introduced here.展开更多
文摘Complex function method and multi-polar coordinate transformation technology are used here to study scattering of circular cavity in right-angle planar space to SH-wave with out-of-plane loading on the horizontal straight boundary. At first, Green function of right-angle planar space which has no circular cavity is constructed; then the scattering solution which satisfies the free stress conditions of the two right-angle boundaries with the circular cavity existing in the space is formulated. Therefore, the total displacement field can be constructed using overlapping principle. An infinite algebraic equations of unknown coefficients existing in the scattering solution field can be gained using multi-polar coordinate and the free stress condition at the boundary of the circular cavity. It can be solved by using limit items in the infinite series which can give a high computation precision. An example is given to illustrate the variations of the tangential stress at the boundary of the circular cavity due to different dimensionless wave numbers, the location of the circular cavity, the loading center and the distributing range of the out-of-plane loading. The results show the efficiency and effectiveness of the mothod introduced here.