为生成有效表示图像场景语义的视觉词典,提高场景语义标注性能,提出一种基于形式概念分析(FCA)的图像场景语义标注模型。该方法首先将训练图像集与其初始的视觉词典抽象为形式背景,采用信息熵标识了各视觉单词的权重,并分别构造了各场...为生成有效表示图像场景语义的视觉词典,提高场景语义标注性能,提出一种基于形式概念分析(FCA)的图像场景语义标注模型。该方法首先将训练图像集与其初始的视觉词典抽象为形式背景,采用信息熵标识了各视觉单词的权重,并分别构造了各场景类别概念格结构;然后再利用各视觉单词权重的均值刻画概念格内涵上各组合视觉单词标注图像的贡献,按照类别视觉词典生成阈值,从格结构上有效提取了标注各类场景图像语义的视觉词典;最后,利用K最近邻标注测试图像的场景语义。在Fei-Fei Scene 13类自然场景图像数据集上进行实验,并与Fei-Fei方法和Bai方法相比,结果表明该方法在β=0.05和γ=15时,标注分类精度更优。展开更多
文摘为生成有效表示图像场景语义的视觉词典,提高场景语义标注性能,提出一种基于形式概念分析(FCA)的图像场景语义标注模型。该方法首先将训练图像集与其初始的视觉词典抽象为形式背景,采用信息熵标识了各视觉单词的权重,并分别构造了各场景类别概念格结构;然后再利用各视觉单词权重的均值刻画概念格内涵上各组合视觉单词标注图像的贡献,按照类别视觉词典生成阈值,从格结构上有效提取了标注各类场景图像语义的视觉词典;最后,利用K最近邻标注测试图像的场景语义。在Fei-Fei Scene 13类自然场景图像数据集上进行实验,并与Fei-Fei方法和Bai方法相比,结果表明该方法在β=0.05和γ=15时,标注分类精度更优。