期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
融合多类型深度迁移学习的电力系统暂态稳定自适应评估 被引量:8
1
作者 李宝琴 吴俊勇 +4 位作者 张若愚 强子玥 覃柳芸 王春明 董向明 《电力自动化设备》 EI CSCD 北大核心 2023年第1期184-192,共9页
针对不同类型人工智能网络应用于电力系统暂态稳定评估时精度和泛化能力不稳定、运行方式或拓扑结构发生较大变化时评估精度下降、重新训练新模型费时费力等问题,提出一种融合多类型深度迁移学习模型(tmDLM)的自适应评估方法,该方法融... 针对不同类型人工智能网络应用于电力系统暂态稳定评估时精度和泛化能力不稳定、运行方式或拓扑结构发生较大变化时评估精度下降、重新训练新模型费时费力等问题,提出一种融合多类型深度迁移学习模型(tmDLM)的自适应评估方法,该方法融合了深度置信网络、卷积神经网络以及长短期记忆网络3种不同的深度学习模型。将训练好的各类深度学习模型作为源域模型,当运行方式或拓扑结构发生较大变化时,采用少量目标域样本集微调预训练模型,使其快速跟踪系统当前的运行状态,并得到tmDLM。新英格兰10机39节点系统和华中电网的仿真结果表明:所提方法可以充分发挥各类深度学习方法的优势,具有良好的泛化能力;六分类模型能够在判稳的同时进行稳定裕度/失稳程度等级的评估;经过迁移后的深度学习模型具有良好的评估精度和时效性,大幅缩短了模型更新时间,实现了电力系统暂态稳定的自适应评估。 展开更多
关键词 深度学习 集成学习 迁移学习 电力系统 暂态稳定
下载PDF
基于改进DCGAN的电力系统暂态稳定增强型自适应评估 被引量:21
2
作者 李宝琴 吴俊勇 +2 位作者 强子玥 覃柳芸 郝亮亮 《电力系统自动化》 EI CSCD 北大核心 2022年第2期73-82,共10页
海量的量测数据为基于数据驱动的暂态稳定预测方法提供了基础,然而故障态样本固有的不平衡性质影响了该类方法的性能。针对暂态稳定预测的样本不平衡问题,提出了一种基于改进深度卷积生成对抗网络(DCGAN)的样本增强方法,通过生成器和判... 海量的量测数据为基于数据驱动的暂态稳定预测方法提供了基础,然而故障态样本固有的不平衡性质影响了该类方法的性能。针对暂态稳定预测的样本不平衡问题,提出了一种基于改进深度卷积生成对抗网络(DCGAN)的样本增强方法,通过生成器和判别器交替对抗训练生成全新有效的失稳样本作为原始训练集的补充。离线训练时,采用深度置信网络作为分类器,采用扩充后的样本集对其进行训练,有效提高了模型对失稳样本的识别率;在线应用时,当系统发生预料之外的变化,采用样本迁移和模型微调技术更新离线模型,进一步对迁移之后的失稳样本进行增强,显著提高了暂态稳定自适应评估的迁移速度和在新场景下失稳样本的识别率,使得评估结果更加可靠。在IEEE 39节点系统和IEEE 140节点系统上的实验结果验证了所提方法的有效性。 展开更多
关键词 暂态稳定 数据驱动 不平衡样本 迁移学习 数据增强 深度卷积生成对抗网络
下载PDF
基于改进AlexNet的电力系统暂态功角失稳紧急控制策略 被引量:11
3
作者 强子玥 吴俊勇 +3 位作者 李宝琴 张若愚 覃柳芸 郝亮亮 《高电压技术》 EI CAS CSCD 北大核心 2022年第7期2794-2804,共11页
随着新能源渗透率的提升,电网环境日益复杂,电力系统安全稳定运行也面临着新的挑战。为了满足电力系统暂态功角失稳后的实时紧急控制决策,采用深度学习与紧急控制相结合的方法,提出一种基于改进AlexNet网络的电力系统暂态功角失稳紧急... 随着新能源渗透率的提升,电网环境日益复杂,电力系统安全稳定运行也面临着新的挑战。为了满足电力系统暂态功角失稳后的实时紧急控制决策,采用深度学习与紧急控制相结合的方法,提出一种基于改进AlexNet网络的电力系统暂态功角失稳紧急控制策略。首先基于改进AlexNet对失稳发电机功角轨迹进行预测,识别临界机群;然后定义紧急控制动作灵敏度指标,建立改进AlexNet灵敏度预测模型,拟合发电机功角特征与紧急控制动作灵敏度的映射关系,从而确定紧急控制的动作母线;最后以切除发电机和负荷容量最小为目标,建立紧急控制优化模型并求解最优策略,并在新英格兰10机39节点系统进行算例验证。结果表明,针对电力系统暂态功角失稳问题提出的基于深度学习的功角轨迹预测模型和紧急控制灵敏度预测模型,均有较高的预测精度。在此基础上制定的紧急控制策略能使失稳系统快速恢复稳定运行,加强电网安全稳定防御体系。 展开更多
关键词 电力系统 深度卷积神经网络 改进AlexNet 紧急控制 灵敏度 暂态功角失稳
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部