在大多数国省道路场景下,基于计算机视觉的交调方式都面临着车型划分精细、道路交通参与者类型繁杂、噪声干扰多等,导致车型流量占比计算困难的问题。为此,本文提出了一种基于细粒度目标检测与跟踪的九型车识别框架,引入基于无锚框和密...在大多数国省道路场景下,基于计算机视觉的交调方式都面临着车型划分精细、道路交通参与者类型繁杂、噪声干扰多等,导致车型流量占比计算困难的问题。为此,本文提出了一种基于细粒度目标检测与跟踪的九型车识别框架,引入基于无锚框和密集特征采样的实时目标检测器(real-time models for object detection,RTMDet)作为检测模块来执行高效、精准的九型车检测任务;同时设计了一种具有任务针对性的感兴趣区域(region of interest,ROI)噪声抑制模块,用于过滤背景噪声和路面无效车辆。通过进一步与深度简单在线和实时跟踪(deep simple online and realtime tracking,DeepSort)框架集成,本文在检测和跟踪精度方面相较于主流方法都得到了提升,可以为二级交调任务提供精准、细粒度的道路流量信息。展开更多
文摘在大多数国省道路场景下,基于计算机视觉的交调方式都面临着车型划分精细、道路交通参与者类型繁杂、噪声干扰多等,导致车型流量占比计算困难的问题。为此,本文提出了一种基于细粒度目标检测与跟踪的九型车识别框架,引入基于无锚框和密集特征采样的实时目标检测器(real-time models for object detection,RTMDet)作为检测模块来执行高效、精准的九型车检测任务;同时设计了一种具有任务针对性的感兴趣区域(region of interest,ROI)噪声抑制模块,用于过滤背景噪声和路面无效车辆。通过进一步与深度简单在线和实时跟踪(deep simple online and realtime tracking,DeepSort)框架集成,本文在检测和跟踪精度方面相较于主流方法都得到了提升,可以为二级交调任务提供精准、细粒度的道路流量信息。