期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于粒子群的多标记阈值自适应极限学习机 被引量:1
1
作者 许二戗 于化龙 《计算机技术与发展》 2019年第4期47-52,共6页
多标记学习考虑单个样例与多个类别标记相关联的情况,类别不平衡主要研究样本不均衡带给算法的影响,两者均是当前机器学习研究领域的热点。在多标记数据集中普遍存在类别不平衡现象,虽然目前已经提出了大量的多标记学习,但对于数据集的... 多标记学习考虑单个样例与多个类别标记相关联的情况,类别不平衡主要研究样本不均衡带给算法的影响,两者均是当前机器学习研究领域的热点。在多标记数据集中普遍存在类别不平衡现象,虽然目前已经提出了大量的多标记学习,但对于数据集的内在特点却鲜有研究。针对这一问题,提出了一种基于粒子群的多标记阈值自适应极限学习机算法(MLTA-ELM)。该算法充分结合了极限学习机学习速度快、泛化性能好的优点及类别不平衡学习中的阈值自适应选择策略。首先利用极限学习机构建一个单隐层前馈神经网络模型,其次利用该模型实现多标记初步预测,然后采用粒子群优化算法作为阈值自适应选择策略,以此获得判断标记类别的最优阈值组合。最后,通过12个基准的多标记数据集,对MLTA-ELM算法的可行性及有效性进行了验证。实验结果表明,该算法与其他几种流行的方法相比,具有更好的预测能力。 展开更多
关键词 多标记分类 类别不平衡 粒子群优化 极限学习机 阈值技术
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部