塔康(tactical air navigation,TACAN)信号峰值检测后的离散数据呈随机采样特性,为避免Kalman算法产生滤波发散问题并有效减小对数据量的需求,提出一种基于压缩感知理论的方位估计方法。通过对塔康信号的角度空间进行稀疏分解和观测值压...塔康(tactical air navigation,TACAN)信号峰值检测后的离散数据呈随机采样特性,为避免Kalman算法产生滤波发散问题并有效减小对数据量的需求,提出一种基于压缩感知理论的方位估计方法。通过对塔康信号的角度空间进行稀疏分解和观测值压缩,优化重构原始包络信号进而获得方位估计值。仿真实验证明了该算法的性能,与最小二乘拟合算法相比,在保证估计精度的同时进一步降低了峰值数据量,大大减少了计算过程中的冗余,并且在信噪比较大的情况下,方位估计准确度较最小二乘拟合有一定提高。展开更多
文摘塔康(tactical air navigation,TACAN)信号峰值检测后的离散数据呈随机采样特性,为避免Kalman算法产生滤波发散问题并有效减小对数据量的需求,提出一种基于压缩感知理论的方位估计方法。通过对塔康信号的角度空间进行稀疏分解和观测值压缩,优化重构原始包络信号进而获得方位估计值。仿真实验证明了该算法的性能,与最小二乘拟合算法相比,在保证估计精度的同时进一步降低了峰值数据量,大大减少了计算过程中的冗余,并且在信噪比较大的情况下,方位估计准确度较最小二乘拟合有一定提高。