期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于热力图和注意力机制的单目6D姿态估计算法
1
作者 许伟濠 张伯泉 刘银萍 《微电子学与计算机》 2023年第7期45-54,共10页
基于二阶段坐标解耦的单目6D姿态估计方法具有稳定、高效和训练速度快的特点,但在精度上还存在改进空间.提出了一种利用高斯热力图坐标回归和融合注意力的单目6D姿态估计算法.该算法在ResNet34骨干网络中引入融合注意力模块,使网络能够... 基于二阶段坐标解耦的单目6D姿态估计方法具有稳定、高效和训练速度快的特点,但在精度上还存在改进空间.提出了一种利用高斯热力图坐标回归和融合注意力的单目6D姿态估计算法.该算法在ResNet34骨干网络中引入融合注意力模块,使网络能够更好地学习物体的表面特征和空间信息;基于可微分空间坐标变换对平移量计算网络进行改进,能够更准确地预测坐标平移量.该算法使用基于密度层次化的聚类方法,建立点云的哈希索引,对所预测的3D点云进行约束,同时有效减少离群的3D采样点.在训练阶段,该算法使用合成渲染图像对LineMod数据集进行扩展,为网络训练提供丰富数据.实验结果表明,该方法的ADD(-S)指标和2D投影误差指标分别达到了93.27%和98.81%,相比基准方法CDPN分别提高了3.41%和0.79%,与PVNet和DPOD等比较新颖的算法对比显示出综合优越性. 展开更多
关键词 6D姿态估计 注意力机制 高斯热力图 空间坐标变换 采样算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部