As the increasing number of the individuals suffering from AIDs,chemotherapy,and radiotherapy,pathogenic fungi,which may rapidly grow and invade the host tissues in these immune-compromised patients,is becoming great ...As the increasing number of the individuals suffering from AIDs,chemotherapy,and radiotherapy,pathogenic fungi,which may rapidly grow and invade the host tissues in these immune-compromised patients,is becoming great threat to human health.In this study,we constructed a novel fungal pathogen-responsive assembly of cuprous oxide(Cu_(2)O)nanoparticles(NPs)for specific targeting and inhibiting growth and biofilm formation of the representative fungal pathogen,Candida albicans(C.albicans).This assembly was formed by coating the initial Cu_(2)O NPs with both phosphatidylethanolamine(PE)and bovine serum albumin(BSA),followed by hydrophobic/electrostatic interaction-driven formation of the Cu_(2)O-PE-BSA microaggregates.The formed microaggregates could be induced for disassembly by the fungal pathogen C.albicans,leading to close binding of the NPs to the cell wall of the pathogen.Both confocal microscopy and viability assays showed that the assembly strongly inhibited growth and biofilm formation of the pathogen,but had extreme low toxicity to mammalian cells.In vivo mouse wound model further revealed that the assembly had high capacity of healing the fungus-infected wounds and reduced the fungal burden of the wound tissues.This study sheds a novel light on facile development of pathogen-responsive nano-assemblies for efficient and safe antifungal therapy.展开更多
基金the National Natural Science Foundation of China(31870139 and 81873961)the Natural Science Foundation of Tianjin(19JCZDJC33800)+1 种基金the National Training Program of Innovation and Entrepreneurship for Undergraduates(201810055105)the Fundamental Research for the Central Universities。
文摘As the increasing number of the individuals suffering from AIDs,chemotherapy,and radiotherapy,pathogenic fungi,which may rapidly grow and invade the host tissues in these immune-compromised patients,is becoming great threat to human health.In this study,we constructed a novel fungal pathogen-responsive assembly of cuprous oxide(Cu_(2)O)nanoparticles(NPs)for specific targeting and inhibiting growth and biofilm formation of the representative fungal pathogen,Candida albicans(C.albicans).This assembly was formed by coating the initial Cu_(2)O NPs with both phosphatidylethanolamine(PE)and bovine serum albumin(BSA),followed by hydrophobic/electrostatic interaction-driven formation of the Cu_(2)O-PE-BSA microaggregates.The formed microaggregates could be induced for disassembly by the fungal pathogen C.albicans,leading to close binding of the NPs to the cell wall of the pathogen.Both confocal microscopy and viability assays showed that the assembly strongly inhibited growth and biofilm formation of the pathogen,but had extreme low toxicity to mammalian cells.In vivo mouse wound model further revealed that the assembly had high capacity of healing the fungus-infected wounds and reduced the fungal burden of the wound tissues.This study sheds a novel light on facile development of pathogen-responsive nano-assemblies for efficient and safe antifungal therapy.