期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于关系感知和标签消歧的细粒度面部表情识别算法
1
作者 刘雅芝 许喆铭 +2 位作者 郎丛妍 王涛 李浥东 《电子学报》 EI CAS CSCD 北大核心 2024年第10期3336-3346,共11页
细粒度表情识别任务因其包含更丰富真实的人类情感而备受关注.现有面部表情识别算法通过提取局部关键区域等方式学习更优的图像表征.然而,这些方法忽略了图像数据集内在的结构关系,且没有充分利用标签间的语义关联度以及图像和标签间的... 细粒度表情识别任务因其包含更丰富真实的人类情感而备受关注.现有面部表情识别算法通过提取局部关键区域等方式学习更优的图像表征.然而,这些方法忽略了图像数据集内在的结构关系,且没有充分利用标签间的语义关联度以及图像和标签间的相关性,导致所学特征带来的性能提升有限.其次,现有细粒度表情识别方法并未有效利用和挖掘粗细粒度的层级关系,因而限制了模型的识别性能.此外,现有细粒度表情识别算法忽略了由于标注主观性和情感复杂性导致的标签歧义性问题,极大影响了模型的识别性能.针对上述问题,本文提出一种基于关系感知和标签消歧的细粒度面部表情识别算法(fine-grained facial expression recognition algorithm based on Relationship-Awareness and Label Disambiguation,RALD).该算法通过构建层级感知的图像特征增强网络,充分挖掘图像之间、层级标签之间以及图像和标签之间的依赖关系,以获得更具辨别性的图像特征.针对标签歧义性问题,算法设计了基于近邻样本的标签分布学习模块,通过整合邻域信息进行标签消歧,进一步提升模型识别性能.在细粒度表情识别数据集FG-Emotions上算法的准确度达到97.34%,在粗粒度表情识别数据集RAF-DB上比现有主流表情分类方法提高了0.80%~4.55%. 展开更多
关键词 细粒度面部表情识别 注意力机制 关系感知 特征优化 标签分布学习
下载PDF
基于图像-文本语义一致性的文本生成图像方法 被引量:5
2
作者 薛志杭 许喆铭 +3 位作者 郎丛妍 冯松鹤 王涛 李浥东 《计算机研究与发展》 EI CSCD 北大核心 2023年第9期2180-2190,共11页
近年来,以生成对抗网络(generative adversarial network,GAN)为基础的文本生成图像方法成为跨媒体融合研究的一大热门领域.文本生成图像方法旨在通过提取更具表征力的文本及图像特征,提升文本描述与生成图像之间的语义一致性.现有方法... 近年来,以生成对抗网络(generative adversarial network,GAN)为基础的文本生成图像方法成为跨媒体融合研究的一大热门领域.文本生成图像方法旨在通过提取更具表征力的文本及图像特征,提升文本描述与生成图像之间的语义一致性.现有方法大多针对在图像全局特征与初始文本语义特征之间进行建模,忽略了初始文本特征的局限性,且没有充分利用具有语义一致性的生成图像对文本特征的指导作用,因而降低了文本生成图像中文本信息的表征性.其次,由于没有考虑到生成目标区域间的动态交互,生成网络只能粗略地划分目标区域,且忽略了图像局部区域与文本语义标签的潜在对应关系.为解决上述问题,提出了一种基于图像-文本语义一致性的文本生成图像方法ITSC-GAN.该模型首先设计了一个文本信息增强模块(text information enhancement module,TEM),利用生成图像对文本信息进行增强,从而提高文本特征的表征能力.另外,该模型提出了一个图像区域注意力模块(image regional attention module,IRAM),通过挖掘图像子区域之间的关系,增强图像特征的表征能力.通过联合利用这2个模块,使得图像局部特征与文本语义标签之间具有更高的一致性.最后,该模型使用生成器与判别器损失函数作为约束,以提升生成图像的质量,促进图像与文本描述的语义一致.实验结果表明,在CUB数据集上,与当前主流方法AttnGAN模型相比,ITSC-GAN模型的IS(inception score)指标增长了约7.42%,FID(Fréchet inception distance)减少了约28.76%,R-precision增加了约14.95%.大量实验结果充分验证了ITSC-GAN模型的有效性及优越性. 展开更多
关键词 文本生成图像 生成对抗网络 图像区域注意力 文本信息增强 语义一致性
下载PDF
融合全局与空间多尺度上下文信息的车辆重识别 被引量:3
3
作者 王振学 许喆铭 +3 位作者 雪洋洋 郎丛妍 李尊 魏莉莉 《中国图象图形学报》 CSCD 北大核心 2023年第2期471-482,共12页
目的车辆重识别指判断不同摄像设备拍摄的车辆图像是否属于同一辆车的检索问题。现有车辆重识别算法使用车辆的全局特征或额外的标注信息,忽略了对多尺度上下文信息的有效抽取。对此,本文提出了一种融合全局与空间多尺度上下文信息的车... 目的车辆重识别指判断不同摄像设备拍摄的车辆图像是否属于同一辆车的检索问题。现有车辆重识别算法使用车辆的全局特征或额外的标注信息,忽略了对多尺度上下文信息的有效抽取。对此,本文提出了一种融合全局与空间多尺度上下文信息的车辆重识别模型。方法首先,设计一个全局上下文特征选择模块,提取车辆的细粒度判别信息,并且进一步设计了一个多尺度空间上下文特征选择模块,利用多尺度下采样的方式,从全局上下文特征选择模块输出的判别特征中获得其对应的多尺度特征。然后,选择性地集成来自多级特征的空间上下文信息,生成车辆图像的前景特征响应图,以此提升模型对于车辆空间位置特征的感知能力。最后,模型组合了标签平滑的交叉熵损失函数和三元组损失函数,以提升模型对强判别车辆特征的整体学习能力。结果在VeRi-776(vehicle re-idendification-776)数据集上,与模型PNVR(part-regularized near-duplicate vehicle re-identification)相比,本文模型的mAP(mean average precision)和rank-1(cumulative matching curve at rank 1)评价指标分别提升了2.3%和2.0%。在该数据集上的消融实验验证了各模块的有效性。在Vehicle ID数据集的大规模测试子集上,就rank-1和rank-5(cumulative matching curve at rank 5)而言,本文模型的mAP比PNVR分别提升了0.8%和4.5%。结论本文算法利用全局上下文特征和多尺度空间特征,提升了拍摄视角变化、遮挡等情况下车辆重识别的准确率,实验结果充分表明了所提模型的有效性与可行性。 展开更多
关键词 车辆重识别 深度学习 局部可区分性特征 特征选择 多尺度空间特征
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部