雷电是电力系统安全的杀手之一。因架空输电线路线路长度长、分布广、面积大,所以易遭受雷击,致使输电线路的绝缘性能遭到破坏。传统防雷措施存在很多缺陷、效果不理想,所以文中采用"疏导型"和气吹灭弧理论,研制了可应用于35~500 k ...雷电是电力系统安全的杀手之一。因架空输电线路线路长度长、分布广、面积大,所以易遭受雷击,致使输电线路的绝缘性能遭到破坏。传统防雷措施存在很多缺陷、效果不理想,所以文中采用"疏导型"和气吹灭弧理论,研制了可应用于35~500 k V架空输电线的新型灭弧防雷装置。首先研究爆炸灭弧防雷间隙所产生的爆炸冲击波与电弧相互耦合、熄灭的特性,建立电弧与爆炸冲击波相互耦合的模型;其次,利用AUTODYN仿真软件建立冲击波和电弧相互作用耦合的模型,对半封闭空间的电弧受到冲击后的形态、运动、压力、以及破坏的程度进行模拟仿真分析;最后,对新型灭弧装置进行灭弧能力试验,根据普通摄像机、高速摄像机所拍摄的图片和录波器所录的波形可以清晰的显示电弧熄灭的过程。通过建模、软件仿真以及灭弧试验检验了新型灭弧装置的有效性,装置在7 ms左右将电弧熄灭,且电弧不重燃。展开更多
文摘雷电是电力系统安全的杀手之一。因架空输电线路线路长度长、分布广、面积大,所以易遭受雷击,致使输电线路的绝缘性能遭到破坏。传统防雷措施存在很多缺陷、效果不理想,所以文中采用"疏导型"和气吹灭弧理论,研制了可应用于35~500 k V架空输电线的新型灭弧防雷装置。首先研究爆炸灭弧防雷间隙所产生的爆炸冲击波与电弧相互耦合、熄灭的特性,建立电弧与爆炸冲击波相互耦合的模型;其次,利用AUTODYN仿真软件建立冲击波和电弧相互作用耦合的模型,对半封闭空间的电弧受到冲击后的形态、运动、压力、以及破坏的程度进行模拟仿真分析;最后,对新型灭弧装置进行灭弧能力试验,根据普通摄像机、高速摄像机所拍摄的图片和录波器所录的波形可以清晰的显示电弧熄灭的过程。通过建模、软件仿真以及灭弧试验检验了新型灭弧装置的有效性,装置在7 ms左右将电弧熄灭,且电弧不重燃。