针对行星齿轮箱故障诊断过程中的故障特征向量区分度差、诊断成功率不够高等问题,提出了一种基于局部均值分解(Local mean decomposition,LMD)排列熵和BP神经网络结合的方法。对原始信号进行LMD,获得包含主要信息的PF分量,计算排列熵值...针对行星齿轮箱故障诊断过程中的故障特征向量区分度差、诊断成功率不够高等问题,提出了一种基于局部均值分解(Local mean decomposition,LMD)排列熵和BP神经网络结合的方法。对原始信号进行LMD,获得包含主要信息的PF分量,计算排列熵值,构造特征向量,利用提取的特征向量训练BP神经网络,完成故障模式识别。以EMD排列熵方法和无量纲分析方法作为对比组,实验验证说明,提出方法提取到的不同工况的特征向量区分度更强,故障诊断效果更好;且当训练组数发生变化时,提出方法的综合表现更优秀。展开更多
文摘针对行星齿轮箱故障诊断过程中的故障特征向量区分度差、诊断成功率不够高等问题,提出了一种基于局部均值分解(Local mean decomposition,LMD)排列熵和BP神经网络结合的方法。对原始信号进行LMD,获得包含主要信息的PF分量,计算排列熵值,构造特征向量,利用提取的特征向量训练BP神经网络,完成故障模式识别。以EMD排列熵方法和无量纲分析方法作为对比组,实验验证说明,提出方法提取到的不同工况的特征向量区分度更强,故障诊断效果更好;且当训练组数发生变化时,提出方法的综合表现更优秀。