为实现双人场景下人体行为的识别,利用调频连续波(frequency modulated continuous wave,FMCW)雷达提出一种基于空间聚类的双人行为识别方法.该方法采用基于密度的DBSCAN(density-based spatial clustering of applications with noise...为实现双人场景下人体行为的识别,利用调频连续波(frequency modulated continuous wave,FMCW)雷达提出一种基于空间聚类的双人行为识别方法.该方法采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)聚类算法将FMCW雷达采集到的坐标数据聚类成不同的聚类群,使得每一个聚类群对应于单一人体的行为,再对其进行数据处理、特征提取后分别采用机器学习方法分类,实现双人场景下人体行为的识别.文中分析行为特征量、动作关键点以及分类器对识别准确率的影响.实验结果表明,在两人场景中该方法对跌倒、坐下和行走的检测准确率分别可以达到100%、93.8%和87.3%.展开更多
人体动作识别是以人为中心的物联网的核心技术之一。为了实现无需穿戴设备、低成本的动作识别系统,提出了一种基于WiFi信道状态信息(Channel State Information,CSI)的人体动作识别方法。该方法采用Hampel滤波结合离散小波去噪对CSI信...人体动作识别是以人为中心的物联网的核心技术之一。为了实现无需穿戴设备、低成本的动作识别系统,提出了一种基于WiFi信道状态信息(Channel State Information,CSI)的人体动作识别方法。该方法采用Hampel滤波结合离散小波去噪对CSI信息进行处理后,利用CSI幅度方差确定动作起止区间,从中提取CSI的特征向量,并用线性判别式分析算法(Linear Discriminant Analysis,LDA)分类器实现人体日常生活中“蹲下”、“站起”、“坐下”、“捡起”和“走”5种动作的识别,实验结果表明平均识别率可达到96%。展开更多
基金Supported by National Natural Science Foundation of China(62071125)the Natural Science Foundation of Fujian Province(2021J01581,2018J01805)the Scientific Research Foundation of Fuzhou University(GXRC-18083)。
文摘为实现双人场景下人体行为的识别,利用调频连续波(frequency modulated continuous wave,FMCW)雷达提出一种基于空间聚类的双人行为识别方法.该方法采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)聚类算法将FMCW雷达采集到的坐标数据聚类成不同的聚类群,使得每一个聚类群对应于单一人体的行为,再对其进行数据处理、特征提取后分别采用机器学习方法分类,实现双人场景下人体行为的识别.文中分析行为特征量、动作关键点以及分类器对识别准确率的影响.实验结果表明,在两人场景中该方法对跌倒、坐下和行走的检测准确率分别可以达到100%、93.8%和87.3%.
文摘人体动作识别是以人为中心的物联网的核心技术之一。为了实现无需穿戴设备、低成本的动作识别系统,提出了一种基于WiFi信道状态信息(Channel State Information,CSI)的人体动作识别方法。该方法采用Hampel滤波结合离散小波去噪对CSI信息进行处理后,利用CSI幅度方差确定动作起止区间,从中提取CSI的特征向量,并用线性判别式分析算法(Linear Discriminant Analysis,LDA)分类器实现人体日常生活中“蹲下”、“站起”、“坐下”、“捡起”和“走”5种动作的识别,实验结果表明平均识别率可达到96%。