针对锂离子电池荷电状态(state of charge,SOC)预测问题,利用长短期记忆(long short-term memory,LSTM)循环神经网络建立电池SOC预测模型。在恒阻放电情况下,将电池输出电流、输出电压和电池表面温度作为模型的主要输入,使用训练样本对...针对锂离子电池荷电状态(state of charge,SOC)预测问题,利用长短期记忆(long short-term memory,LSTM)循环神经网络建立电池SOC预测模型。在恒阻放电情况下,将电池输出电流、输出电压和电池表面温度作为模型的主要输入,使用训练样本对神经网络进行训练,使用验证样本进行验证。结果表明,用该方法进行电池SOC预测时可使最大绝对误差仅为1.96%,均方根误差为0.986%,可行性被验证。分析神经网络隐含层中不同的神经元个数对预测结果的影响,对比不同批大小情况下训练出的神经网络的预测误差。将隐含层分别设置为1至3个LSTM细胞核,得到不同条件下神经网络的预测误差。结果为电池SOC预测的神经网络模型的隐含层神经元个数、批大小和LSTM细胞核个数的设定提供参考。展开更多
文摘针对锂离子电池荷电状态(state of charge,SOC)预测问题,利用长短期记忆(long short-term memory,LSTM)循环神经网络建立电池SOC预测模型。在恒阻放电情况下,将电池输出电流、输出电压和电池表面温度作为模型的主要输入,使用训练样本对神经网络进行训练,使用验证样本进行验证。结果表明,用该方法进行电池SOC预测时可使最大绝对误差仅为1.96%,均方根误差为0.986%,可行性被验证。分析神经网络隐含层中不同的神经元个数对预测结果的影响,对比不同批大小情况下训练出的神经网络的预测误差。将隐含层分别设置为1至3个LSTM细胞核,得到不同条件下神经网络的预测误差。结果为电池SOC预测的神经网络模型的隐含层神经元个数、批大小和LSTM细胞核个数的设定提供参考。