A novel esterase EstC10 from Bacillus sp. CX01 isolated from the deep sea of the Western Pacific Ocean and the functionalities of EstC 10 was characterized. At present, the reports about the kinetic resolution ofracem...A novel esterase EstC10 from Bacillus sp. CX01 isolated from the deep sea of the Western Pacific Ocean and the functionalities of EstC 10 was characterized. At present, the reports about the kinetic resolution ofracemic methyl 2-chloropropionate were quite rare. So we developed deep-sea microbial esterase EstC10 as a novel biocatalyst in the kinetic resolution of racemic methyl 2-chloropropionate and generate (R)-methyl 2-chloropropionate with high enantiomeric excess (〉99%) after the optimization of process parameters such as pH, temperature, organic co-solvents, surfactants, substrate concentration and reaction time. Notably, the optimal substrate concentration (80 mmol/L) of esterase EstC10 was higher than the kinetic resolution of another esterase, Estl2-7 (50 mmoFL). The novel microbial esterase EstC10 identified from the deep sea was a promising green biocatalyst in the generation of (R)-methyl 2-chloropropionate as well of many other valuable chiral chemicals in industry.展开更多
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA11030404)the Guangzhou Science and Technology Plan Projects(No.201510010012)the National Natural Science Foundation of China(No.21302199)
文摘A novel esterase EstC10 from Bacillus sp. CX01 isolated from the deep sea of the Western Pacific Ocean and the functionalities of EstC 10 was characterized. At present, the reports about the kinetic resolution ofracemic methyl 2-chloropropionate were quite rare. So we developed deep-sea microbial esterase EstC10 as a novel biocatalyst in the kinetic resolution of racemic methyl 2-chloropropionate and generate (R)-methyl 2-chloropropionate with high enantiomeric excess (〉99%) after the optimization of process parameters such as pH, temperature, organic co-solvents, surfactants, substrate concentration and reaction time. Notably, the optimal substrate concentration (80 mmol/L) of esterase EstC10 was higher than the kinetic resolution of another esterase, Estl2-7 (50 mmoFL). The novel microbial esterase EstC10 identified from the deep sea was a promising green biocatalyst in the generation of (R)-methyl 2-chloropropionate as well of many other valuable chiral chemicals in industry.