针对局部线性嵌入算法(Local Linear Embedding,LLE)利用试凑法寻找近邻数耗时的缺陷性,提出一种增强的核局部线性嵌入算法(Enhanced Kernel Local Linear Embedding,EKLLE)自动为样本分配邻域;该算法以高斯核函数为核心改进标准LLE距...针对局部线性嵌入算法(Local Linear Embedding,LLE)利用试凑法寻找近邻数耗时的缺陷性,提出一种增强的核局部线性嵌入算法(Enhanced Kernel Local Linear Embedding,EKLLE)自动为样本分配邻域;该算法以高斯核函数为核心改进标准LLE距离度量准则,结合样本的类别信息,无需人工干预自动为样本设置不同的近邻数,克服了试凑法获得最优结果时需要大量时间;最后在各样本近邻数不相同的情况下对数据进行维数简约及待测样本分类。EKLLE算法有效地将高维基因表达谱数据映射到低维本质空间中,解决了传统LLE算法不能很好地处理含噪声或者稀疏数据的缺点。通过对比其他肿瘤样本分类实验,验证本文方法的实时性和精确性。展开更多
伴随着基因芯片的发展,通过研究海量的基因表达谱数据来识别肿瘤已成为生物信息学研究的热点.提出一种基于LoG(Laplace of Gaussian)矩阵分解的肿瘤基因特征提取方法,该方法首先将样本数据映射为高维空间中的点,然后构建点与点之间的Lo...伴随着基因芯片的发展,通过研究海量的基因表达谱数据来识别肿瘤已成为生物信息学研究的热点.提出一种基于LoG(Laplace of Gaussian)矩阵分解的肿瘤基因特征提取方法,该方法首先将样本数据映射为高维空间中的点,然后构建点与点之间的LoG矩阵,在保留样本分类信息的情况下,使得无结构信息的基因表达谱数据变成具有结构信息的图,再对LoG权值矩阵进行非负矩阵分解得到能够表征样本特征的特征分量,最后用KNN对样本进行分类.通过对白血病和结肠癌基因表达谱数据的特征提取,验证该文方法的可行性和有效性.展开更多
文摘针对局部线性嵌入算法(Local Linear Embedding,LLE)利用试凑法寻找近邻数耗时的缺陷性,提出一种增强的核局部线性嵌入算法(Enhanced Kernel Local Linear Embedding,EKLLE)自动为样本分配邻域;该算法以高斯核函数为核心改进标准LLE距离度量准则,结合样本的类别信息,无需人工干预自动为样本设置不同的近邻数,克服了试凑法获得最优结果时需要大量时间;最后在各样本近邻数不相同的情况下对数据进行维数简约及待测样本分类。EKLLE算法有效地将高维基因表达谱数据映射到低维本质空间中,解决了传统LLE算法不能很好地处理含噪声或者稀疏数据的缺点。通过对比其他肿瘤样本分类实验,验证本文方法的实时性和精确性。
文摘伴随着基因芯片的发展,通过研究海量的基因表达谱数据来识别肿瘤已成为生物信息学研究的热点.提出一种基于LoG(Laplace of Gaussian)矩阵分解的肿瘤基因特征提取方法,该方法首先将样本数据映射为高维空间中的点,然后构建点与点之间的LoG矩阵,在保留样本分类信息的情况下,使得无结构信息的基因表达谱数据变成具有结构信息的图,再对LoG权值矩阵进行非负矩阵分解得到能够表征样本特征的特征分量,最后用KNN对样本进行分类.通过对白血病和结肠癌基因表达谱数据的特征提取,验证该文方法的可行性和有效性.