期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于半参数Copula学习的确定性独立筛选研究
1
作者 辛欣 谢博易 刘科科 《Chinese Quarterly Journal of Mathematics》 2024年第2期144-160,共17页
This paper is concerned with ultrahigh dimensional data analysis,which has become increasingly important in diverse scientific fields.We develop a sure independence screening procedure via the measure of conditional m... This paper is concerned with ultrahigh dimensional data analysis,which has become increasingly important in diverse scientific fields.We develop a sure independence screening procedure via the measure of conditional mean dependence based on Copula(CC-SIS,for short).The CC-SIS can be implemented as easily as the sure independence screening procedures which respectively based on the Pearson correlation,conditional mean and distance correlation(SIS,SIRS and DC-SIS,for short)and can significantly improve the performance of feature screening.We establish the sure screening property for the CC-SIS,and conduct simulations to examine its finite sample performance.Numerical comparison indicates that the CC-SIS performs better than the other two methods in various models.At last,we also illustrate the CC-SIS through a real data example. 展开更多
关键词 Ultrahigh dimensionality Conditional mean dependence Copula learning Semiparametric method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部