针对低信噪比(signal to noise ratio,SNR)下雷达信号脉内调制类型识别率较低的问题,提出了基于时频特征提取和残差神经网络的雷达信号识别算法。时频特征提取首先通过分数阶傅里叶变换对信号进行Chirp基分解,按照Chirp基载频与调频率...针对低信噪比(signal to noise ratio,SNR)下雷达信号脉内调制类型识别率较低的问题,提出了基于时频特征提取和残差神经网络的雷达信号识别算法。时频特征提取首先通过分数阶傅里叶变换对信号进行Chirp基分解,按照Chirp基载频与调频率的不同组合对信号划分类别,并设置对应的分类特征参数。然后,计算信号的伪Wigner-Ville时频分布并提取Zernike矩。上述特征参数组成信号特征矢量,使用残差神经网络分类器实现雷达信号识别。仿真结果表明,在SNR=-2 dB时识别准确率能达到93%以上,同时鲁棒性验证良好,算法复杂度能够满足现实要求。展开更多
文摘针对低信噪比(signal to noise ratio,SNR)下雷达信号脉内调制类型识别率较低的问题,提出了基于时频特征提取和残差神经网络的雷达信号识别算法。时频特征提取首先通过分数阶傅里叶变换对信号进行Chirp基分解,按照Chirp基载频与调频率的不同组合对信号划分类别,并设置对应的分类特征参数。然后,计算信号的伪Wigner-Ville时频分布并提取Zernike矩。上述特征参数组成信号特征矢量,使用残差神经网络分类器实现雷达信号识别。仿真结果表明,在SNR=-2 dB时识别准确率能达到93%以上,同时鲁棒性验证良好,算法复杂度能够满足现实要求。