为了克服测量响应的不确定性给乘员约束系统参数识别带来的困难,利用马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)采样和近似模型构造技术,提出一种基于贝叶斯推理的乘员约束系统不确定性参数识别方法.该方法结合约束系统参数的...为了克服测量响应的不确定性给乘员约束系统参数识别带来的困难,利用马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)采样和近似模型构造技术,提出一种基于贝叶斯推理的乘员约束系统不确定性参数识别方法.该方法结合约束系统参数的先验分布和测量响应,通过马尔科夫链在未知参数联合概率密度空间进行抽样,从而获得了织带刚度缩放系数和质量流率缩放系数的后验边缘概率密度函数.识别结果表明,相比于传统确定性识别方法,基于贝叶斯推理的不确定性参数识别方法不仅能有效给出乘员约束系统参数的概率分布,而且能够保证参数寻优的全局收敛性.展开更多
文摘为了克服测量响应的不确定性给乘员约束系统参数识别带来的困难,利用马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)采样和近似模型构造技术,提出一种基于贝叶斯推理的乘员约束系统不确定性参数识别方法.该方法结合约束系统参数的先验分布和测量响应,通过马尔科夫链在未知参数联合概率密度空间进行抽样,从而获得了织带刚度缩放系数和质量流率缩放系数的后验边缘概率密度函数.识别结果表明,相比于传统确定性识别方法,基于贝叶斯推理的不确定性参数识别方法不仅能有效给出乘员约束系统参数的概率分布,而且能够保证参数寻优的全局收敛性.