期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于计算流体动力学与离散元法耦合的磁力泵水沙运动的数值模拟
1
作者 谢汭之 喻黎明 +2 位作者 王田田 杨具瑞 李娜 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第3期370-378,共9页
应用计算流体动力学与离散元法耦合的方法,对MP6-R微型磁力泵3种进口流速(0.5、1.0、1.5 m/s)和3种含沙量(0.5%、1.0%、2.0%)水沙运动进行数值模拟。结果表明:当进口流速为0.5 m/s时,磁力泵出口管道与蜗壳衔接段出现回流区,其最大回流... 应用计算流体动力学与离散元法耦合的方法,对MP6-R微型磁力泵3种进口流速(0.5、1.0、1.5 m/s)和3种含沙量(0.5%、1.0%、2.0%)水沙运动进行数值模拟。结果表明:当进口流速为0.5 m/s时,磁力泵出口管道与蜗壳衔接段出现回流区,其最大回流速度为1.07m/s,随着进口流速的加大,回流速度逐渐降低,当进口流速达到1.5m/s时,回流现象消失,水流速度方向稳定指向出口,磁力泵过流性能最佳;叶轮轴面附近存在大量低速沙粒汇聚的滞留区,滞留区沙粒相互碰撞产生初始切速度;当进口流速一定时,改变颗粒体积分数对滞留区沙粒平均速度的影响较小;进口流速低于1.0 m/s时,增加颗粒体积分数会降低颗粒残留比,进口流速高于1 m/s后,颗粒残留比非常接近;当颗粒体积分数一定时,提升进口流速会降低颗粒残留比,增加滞留区沙粒平均速度,进口流速达到1m/s后,颗粒残留比和滞留区沙粒平均速度随进口流速的变化不明显,磁力泵输送性能最佳。结合磁力泵的过流性能、输送性能与叶轮表面的载荷强度,建议磁力泵最佳运行状态下进口流速保持在1.0 m/s以上。 展开更多
关键词 磁力泵 水沙运动 进口流速 颗粒体积分数 滞留区 颗粒残留比
下载PDF
基于计算流体动力学与离散元法的离心泵内流场及磨损的数值模拟 被引量:2
2
作者 王田田 支嘉才 +3 位作者 杨具瑞 谢汭之 喻黎明 崔宁博 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第2期235-241,共7页
利用离散单元法与流体动力学耦合的方法研究了不同入口流速(0.6、1.2、1.7 m/s)和额定转速(2650、2800、3000 r/min)下单级离心泵内部流场变化、磨损部位、磨损量、输送能力。结果表明:离心泵叶轮叶片尾部易发生空化现象,入口流速对叶... 利用离散单元法与流体动力学耦合的方法研究了不同入口流速(0.6、1.2、1.7 m/s)和额定转速(2650、2800、3000 r/min)下单级离心泵内部流场变化、磨损部位、磨损量、输送能力。结果表明:离心泵叶轮叶片尾部易发生空化现象,入口流速对叶片空化现象、出水管道滞留区域产生的影响大于转速的;9种工况下离心泵最大磨损量出现在叶片尾部,转速从2650 r/min变化为3000 r/min时,磨损最严重的部位由叶片1、4尾部变为叶片1、2尾部,叶轮叶片为离心泵磨损最严重的部件,占离心泵总磨损量的38.10%~49.41%;离心泵内沙粒平均停留时间表明,流速对离心泵输送性能的影响大于转速的,入口流速0.6m/s、1.2m/s、1.7m/s下沙粒平均停留时间分别为0.144、0.068、0.052 s,说明随着流速的增加,离心泵输送性能增强。 展开更多
关键词 单级离心泵 内流场 磨损 计算流体动力学 离散元法 数值模拟
下载PDF
颗粒特性对离心泵叶轮叶片的磨损分析 被引量:3
3
作者 王田田 池晓清 +3 位作者 杨具瑞 谢汭之 董浩然 喻黎明 《水动力学研究与进展(A辑)》 CSCD 北大核心 2022年第2期181-189,共9页
为了预测离心泵叶轮叶片的磨损位置和计算磨损量的大小,利用有限元软件Ansys-FLUENT和离散元软件EDEM基于计算流体动力学(CFD)和离散单元法(DEM)耦合的方法,探究了颗粒体积分数(2%、3%和4%)、粒径(1 mm、2 mm和3 mm)、形状(球形、类球... 为了预测离心泵叶轮叶片的磨损位置和计算磨损量的大小,利用有限元软件Ansys-FLUENT和离散元软件EDEM基于计算流体动力学(CFD)和离散单元法(DEM)耦合的方法,探究了颗粒体积分数(2%、3%和4%)、粒径(1 mm、2 mm和3 mm)、形状(球形、类球形和三角形)对离心泵叶轮叶片的磨损影响。结果表明离心泵内部压强最大处为隔舌部位,出口管道的滞留区域与大涡量区域分布一致,管道涡具有滞留作用;随着颗粒体积分数的增加,颗粒最大速度增加,最小速度减小,叶轮叶片磨损量增大,磨损分布不变;当粒径增大时,颗粒最大速度与最小速度同时增大,磨损增加,磨损最严重的位置由尾部变为头部,颗粒尖锐程度的增加也使得磨损加剧。 展开更多
关键词 CFD-DEM 离心泵 颗粒特性 磨损
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部